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Abstract

The various approaches for the implementation of qubits are objects of ongoing
research. One approach uses the spin states of electrons that are confined in double
quantum dots. For the calibration of such a qubit, charge stability diagrams (CSDs)
are measured and analyzed. They constitute the changes in dependence on the
voltages of two electrodes and, thus, can be represented as grayscale images. The
voltages at which electrons tunnel in or out of the quantum dots correspond to line
structures in the CSD images. Therefore, the automatic detection of lines in CSD
images plays an important role in the qubit calibration process.

Various line detection methods are explored in this thesis. Since edge detection is a
substep employed by several line detectors, a selection of edge detection methods is
explored as well. Additionally, postprocessing methods for the validation, grouping,
and merging of lines and the segmentation of infinite lines into finite line segments are
investigated. This thesis focuses on traditional approaches as opposed to approaches
based on machine learning.

Two methods are proposed for the automatic evaluation of the detection results.
Both methods function by comparing the detections against a manually labeled
ground truth data set. The first method evaluates edge maps by comparing the
individual edge pixels with the pixels corresponding to the ground truth lines. The
second method benchmarks the detected lines against the ground truth lines. Using
these evaluation methods, the free parameters of the edge detectors, line detectors,
and postprocessing methods are optimized.

The detection results of the methods are evaluated and compared for four data sets
of varying quality. Additionally, the implications of the detection quality for the
analysis of CSDs are explained.
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Kurzfassung

Die verschiedenen Möglichkeiten der Implementierung von Qubits sind Gegenstand
aktueller Forschung. Eine Art der Implementierung nutzt die Spinzustände von
Elektronen, welche in Doppelquantenpunkten eingefangen sind. Für die Kalib-
rierung solcher Qubits werden Ladungsstabilitätsdiagramme gemessen und analysiert.
Diese Diagramme stellen die Änderungen des Leitwertes in Abhängigkeit von zwei
an Elektroden angelegte Spannungen dar und können dementsprechend als Grau-
wertbilder dargestellt werden. Diejenigen Spannungsbereiche, in welchen sich Elek-
tronen in einen Quantenpunkt hinein oder aus einem Quantenpunkt heraus bewe-
gen, entsprechen Linienstrukturen innerhalb der Ladungsstabilitätsdiagramme. Da-
her spielt die automatische Erkennung von Linien innerhalb der Ladungsstabilitäts-
diagramme eine wichtige Rolle für den Kalibrierungsprozess der Qubits.

Verschiedene Methoden zur Liniendetektion werden in dieser Arbeit untersucht. Da
mehrere Liniendetektoren die Detektion von Kantenpixeln als Teilschritt einsetzen,
wird ebenfalls eine Auswahl an Kantendetektoren betrachtet. Des Weiteren werden
Nachverarbeitungsmethoden für das Validieren, Gruppieren und Verschmelzen von
Linien sowie für die Segmentierung von unendlichen Linien in endliche Linienseg-
mente untersucht. Diese Arbeit konzentriert sich dabei auf traditionelle Ansätze,
die nicht auf Machine Learning basieren.

Zwei Methoden für die automatische Bewertung der Detektionsergebnisse werden
vorgestellt. Beide Methoden basieren darauf, die Detektionsergebnisse mit einem
manuell erzeugten Ground-Truth-Datensatz zu vergleichen. Die erste Methode be-
wertet die Kantenbilder, indem die individuellen Kantenpixel mit den Pixeln der
Ground-Truth-Linien verglichen werden. In der zweiten Methode werden die detek-
tierten Linien direkt mit den Ground-Truth-Linien verglichen. Unter der Nutzung
dieser Bewertungsmethoden werden die freien Parameter der Kanten- und Linien-
detektoren sowie Nachverarbeitungsmethoden optimiert.

Die Detektionsergebnisse werden auf vier Datensätzen mit unterschiedlicher Qualität
bewertet und verglichen. Zusätzlich werden die Implikationen, welche die Detektion-
squalität für die Analyse von Ladungsstabilitätsdiagrammen hat, diskutiert.
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1 Introduction

This chapter gives an overview of the application that motivates this thesis. First,
the institute this thesis is written at is introduced. Afterward, an implementation of
qubits that uses double quantum dots is described in Section 1.2. For the calibration
of this type of qubit implementation, a charge stability diagram (CSD) has to be
analyzed. Section 1.3 describes the properties of the CSDs and Section 1.4 explains
the importance of the automatic detection of line segments in CSDs for the qubit
calibration process.

1.1 Central Institute of Engineering, Electronics, and
Analytics

The Central Institute for Engineering, Electronics, and Analytics (ZEA) devel-
ops devices, experiments, methods, and computer-aided tools for cutting-edge re-
search. For these developments, the ZEA collaborates with other institutes at the
Forschungszentrum Jülich as well as external research institutions internationally.
The ZEA is divided into the following three sections:

1. Engineering and Technology (ZEA-1)

2. Electronic Systems (ZEA-2)

3. Analytics (ZEA-3)

This thesis is written at ZEA-2. The ZEA-2 develops electronic system solutions.
One of the research projects the ZEA-2 is involved in is Semiconductor Quantum
Bit Control (SemiQuBiC ). The goal of SemiQuBiC is the development of control
and read-out electronics for the usage in future quantum computers.

1.2 Qubits in Double Quantum Dots

A quantum computer is a computer that uses quantum effects to perform calcu-
lations. For some problems, the calculations performed by a quantum computer
have the potential to be exponentially faster than those performed by a classical
computer. An example is the Shor algorithm for prime factorization [1].

1



1 Introduction

In a quantum computer, the fundamental unit of information is a quantum bit
(qubit). Its analog on a classical computer, the classical bit, is always in one specific
state, either 0 or 1. However, the state |ψ〉 of a qubit is a superposition of two base
states |0〉 and |1〉1:

|ψ〉 = α |0〉+ β |1〉 with α, β ∈ C and |α|2 + |β|2 = 1. (1.1)

When measured, the qubit collapses into one of its base states. The probabilities for
the resulting state are |α|2 for |0〉 and |β|2 for |1〉. Since computations on a qubit
are based on these states |0〉 and |1〉, they are also called the computational base
states of the qubit.

A set of n connected qubits, called a quantum register, has 2n base states. Equation
(1.2) shows the formula for the state of a quantum register which consists of two
qubits.

|ψ2〉 = α1 |00〉+ α2 |01〉+ α3 |10〉+ α4 |11〉 with α1, . . . , α4 ∈ C and
4∑

i=1
|αi |2 = 1

(1.2)
When an operation on a quantum register is performed, the coefficients α1, . . . , αn

are manipulated while the equation remains fulfilled. Since the number of base states
of a quantum register grows exponentially with the number of qubits, the number
of coefficients manipulated by a quantum operation also grows exponentially. This
explains why quantum computers can outperform classical computers for certain
calculations.

In addition to superposition, quantum entanglement is another quantum effect that
plays an important role in quantum computing. Qubits are entangled if their mea-
surement outcomes depend on each other. For example, two qubits could be entan-
gled in such a way that, upon being measured, they will both collapse into the same
state:

|ψe〉 = α1 |00〉+ α2 |11〉 . (1.3)

Possible implementations of qubits are an object of ongoing research. The imple-
mentation that is researched in the SemiQuBiC project uses the spin states of two
electrons to define the computational base states of a qubit. The spin of a single
electron is in a superposition of two base states, designated as |↓〉 for a spin down
and |↑〉 for a spin up. A system of two electrons, therefore, has |↓↓〉, |↓↑〉, |↑↓〉,
and |↑↑〉 as its base states. The states |↑↑〉 and |↓↓〉, in which both electrons have
the same spin, are eliminated by applying a magnetic field to the double quantum
dot [2, Section 2.4.1]. This leaves the two states |↓↑〉 and |↑↓〉, from which the
computational base states of the qubit are derived.

To form a qubit, the two required electrons first need to be trapped in a double
quantum dot. A quantum dot is a nanostructure that confines electrons in all three
dimensions [2, Section 2.3]. A double quantum dot consists of two coupled quantum
dots that can exchange electrons. In the SemiQuBiC project, the quantum dots are

1The Dirac notation |·〉 designates quantum states.
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1.2 Qubits in Double Quantum Dots

composed of two layers of semiconductors between which a two-dimensional electron
gas is located. A schematic representation of a double quantum dot using aluminum
gallium arsenide (AlGaAs) and gallium arsenide (GaAs) as semiconductors is dis-
played in Figure 1.1.

Figure 1.1: Schematic representation of a double quantum dot [2, Section 2.2].

On top of the area where the double quantum dot is formed, several electrodes, called
gates, are located. Figure 1.2 shows the gate layout of the used sample. For this
thesis, the most important gates are the so-called plungers P1 and P2. The plungers
are responsible for controlling the number of electrons in the respective dots. A
nearby structure, the sensor dot, reacts to changes in its electrostatic environment.
This gives information on changes in the number of electrons contained in each of
the quantum dots. The sensor dot itself is also a quantum dot, but it is only used
for reading out the double quantum dot and not for computation.

Figure 1.2: Two double quantum dots and their corresponding sensor dots and gates
[3].

To trap the desired number of electrons, typically one, in each of the two quantum
dots, the correct voltage ranges for the plunger gates P1 and P2 must be determined.
This is done by measuring the conductance of the sensor dot while varying the gate
voltages, which results in two-dimensional measurement data. A plot of these data
is called a charge stability diagram (CSD).

3



1 Introduction

1.3 Charge Stability Diagrams

As explained in the previous section, CSDs are the result of plotting the sensor dot
measurement, which is proportional to the conductance, against the voltages of the
plunger gates P1 and P2. The analysis of CSDs aids in determining the optimal
voltage ranges for these gates, at which each of the two quantum dots contains the
desired number of electrons. The voltage ranges with a specific number of electrons
in the left and right quantum dot can be identified as a honeycomb-shaped structure
inside the CSD. Figure 1.3 shows a schematic CSD. The number of electrons in the
left and right quantum dot is marked as a tuple within the honeycomb-like structure.
The lines between the segments signify that an electron is tunneling in or out of the
quantum dots. At the longer lines, exemplarily marked with the red and green
arrows in the image, the electron tunnels between the leads and the dot system.
Therefore, such transitions of electrons are called lead-to-dot transitions. At the
shorter lines, like the one marked by the blue arrow, an electron is tunneling from
one quantum dot into the other. Such a transition is called interdot transition.

Figure 1.3: Schematic CSD [2, Section 2.4].

Currently, the optimal voltage ranges at which the desired number of electrons is
contained in each quantum dot are usually determined manually by an experimenter.
However, this approach is not scalable. For a scalable solution, automatic detection
of the honeycomb-shaped segments is required. For this purpose, the application of
line detection algorithms to CSD images is explored in this thesis, to automatically
detect the voltage ranges, at which tunneling of electrons in and out of the quantum
dots occurs.

1.4 Motivation

The CSDs are disturbed by several kinds of noise and artifacts. Figure 1.4 shows
three CSDs with different line characteristics. In all three images, additive noise
and gradual brightness changes within the honeycomb-shaped structures can be
observed. Additionally, the CSDs contain horizontal stripes. These are caused by

4



1.4 Motivation

the measurement process, which is performed as a series of 1D sweeps. While the
lines in Figure 1.4 (a) are distinct and straight, the line in (b) is much weaker and the
lines in (c) are slightly curved. These characteristics make the automatic detection
of the lines challenging. The gate voltages used during the measurement of the CSD
are not given as absolute values, but as changes ∆V1 and ∆V2 from a given start
voltage.

(a) (b) (c)

Figure 1.4: CSDs with (a) distinct, straight lines, (b) a weak straight line, and (c)
curved lines.

Initial experimentation on CSD data shows that line detectors often fail in areas
where the lines are not distinct, and that strong noise leads to false positive de-
tections. Other problems, such as the detection of too short lines or the erroneous
detection of several short or overlapping lines instead of one contiguous line, do oc-
cur, but they present a much less critical issue for the analysis of CSDs. Therefore,
the aim of this thesis is to evaluate different approaches of line detection methods,
with the main goal of determining which approaches are most robust for detecting
many lines at least partially and without too many false positives.

The explored methods are described in Chapter 2. In Chapter 3, two evaluation
methods are proposed to quantify the quality of a given detection result according
to the goals described above. Using these evaluation methods, the free parameters
of the detection methods can be optimized, which improves the detection quality
and enables a more accurate comparison of the results than a manual parameter
selection. This optimization process is described in Chapter 4. Finally, Chapter 5
contains quantitative and qualitative evaluations of the detection methods.
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2 Line Detection

The detection of lines in digital images plays an important role in various applica-
tions, and there is a vast number of line detection methods in the literature. An
overview of the methods this thesis focuses on is given in Section 2.1. Additionally,
the contained submethods are subdivided into edge detection, line detection, and
postprocessing. Splitting the line detectors into their submethods enables, where
applicable, the evaluation of whether a new combination of submethods from differ-
ent line detectors leads to improved results. Sections 2.2 to 2.5 give a more detailed
description of the methods.

All described methods are assumed to receive a grayscale image as input.

2.1 Overview

Traditional line detection approaches use hand-crafted algorithms for which few
or even no parameters need to be fine-tuned. More recent approaches incorpo-
rate machine learning models, like neural networks, into the line detection process.
Such models require a large labeled data set to train their parameters, which is
not available to the author of this thesis. Additionally, traditional approaches and
their parameters are easier to understand than machine learning models. This can
be beneficial when the CSD data, that a detector is applied to and adapted for,
changes, for example when there is a change in the hardware implementation of
the quantum dots. Especially since implementation of the detection in hardware
is required, an approach of low complexity is preferable. Therefore, this thesis will
focus on a selection of promising traditional approaches.

An important submethod occurring in some line detection methods is the detection
of edge pixels. Although some line detectors contain methods for the detection
of edge pixels, other line detectors expect a binary edge map as input. Table 2.1
displays a selection of methods to create such binary edge maps. Some of them are
submethods of a larger line detection method. For example, CannyPF was published
as a submethod to be used in a line detection method named CannyLines [4]. As
with line detectors, many recently published edge detectors are based on machine
learning. This thesis will focus on hand-crafted algorithms for the same reasons as
mentioned above for line detectors.

Some methods detect lines without defined starting and end points. In the following,
such lines are referred to as infinite lines. Lines with defined starting and end

7



2 Line Detection

Table 2.1: Methods for the detection of edge pixels.
Method name Method category Section
GMT Differentiation-based Section 2.2.1
Canny Differentiation-based Section 2.2.2
CannyPF Differentiation-based Section 2.2.3
ED Differentiation- and linking-based Section 2.2.4
gPb Based on several features Section 2.2.5

points are referred to as (finite) line segments. Table 2.2 gives an overview of the
line detectors evaluated in this thesis and displays their submethods. Submethods
marked as “external” are not part of the given line detector but are expected to be
already applied to the image which the line detector receives as its input. The line
detection methods can be grouped mostly into voting-based approaches and region-
based approaches. In voting-based methods, a line is defined by a parameter pair
(e. g. y-axis-intercept and slope), and detections are made by voting for specific
parameter pairs. Methods based on regions connect sets of pixels into the final line
segments. Many line detectors also contain postprocessing steps like validation, in
which those detected lines that are likely to be false positives are removed. It should
be noted that this list of line detection methods is by no means complete. However,
it contains the most widely used methods and also represents the different groups
of algorithmic approaches.

2.2 Edge Detection

Edge pixels are pixels at which the image brightness changes significantly [5]. The
detection of edge pixels plays an important role in line detection because edge pixels
are potentially part of a line. The result of an edge detector is either a binary edge
map, classifying each pixel as an edge or non-edge pixel, or a different data structure
containing the same information, like a list containing the coordinates of the edge
pixels.

2.2.1 Gradient Magnitude Thresholding

A simple method for the detection of edge pixels is to select pixels at which the
local gradient is the strongest. This method is referred to as gradient magnitude
thresholding (GMT) in the following. Image gradients are usually determined by
convolving the input image with a filter. One filter that is often used for this purpose
is the Sobel operator [6]. First, the gradients Gx in x -direction and Gy in y-direction
of the grayscale image I are computed:

Gx =

 −1 0 1
−2 0 2
−1 0 1

 ∗ I and Gy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ I . (2.1)
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2.2 Edge Detection

Table 2.2: Methods for the detection and postprocessing of lines.
Method
name

Edge detection
method

Line detection method Postprocessing
method

SHT External. Voting-based, see Section
2.3.1.

No.

KHT External. Voting-based, see Section
2.3.2.

No.

PPHT External. Voting-based, see Section
2.3.3.

No.

PCLines External. Voting-based, see Section
2.3.4.

No.

LSD No. Region growing, rectangu-
lar approximation, valida-
tion, see Section 2.4.1.

No.

EDLines Edge Drawing,
see Section
2.2.4.

Fitting, see Section 2.4.2. Validation, see
Section 2.5.1.

ELSED No. Combined Edge Drawing and
fitting, see Section 2.4.3.

Validation, see
Section 2.5.1.

SSWMS No. Iterative sampling and grow-
ing, see Section 2.4.4.

No.

ELSDc No. Region-based, fitting, valida-
tion, see Section 2.4.5.

No.

FLD Canny, see Sec-
tion 2.2.2.

Region growing, see Section
2.4.6.

No.

Canny-
Lines

CannyPF, see
Section 2.2.3.

Region-based, fitting, see
Section 2.4.7.

Validation, see
Section 2.5.1.

Yuan No. Region- and voting-based,
see Section 2.4.8.

No.

Linelet No. Region-based, validation, ag-
gregation, see Section 2.4.9.

No.

FSG No. External. Clustering, see
Section 2.5.2.

The gradient magnitude G can then be computed as:

G =
√
G2

x + G2
y . (2.2)

By comparing this gradient magnitude to a given threshold, the pixels at which the
brightness change is strong, i. e. the edges, are determined.

2.2.2 Canny Edge Detector

The edge detector proposed by Canny [7] is one of the most widely used edge detec-
tion algorithms. It first smoothes the image and computes the gradient magnitude
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and gradient orientations at each pixel. Then, a threshold is applied to the gradient,
and edges are thinned to have a thickness of one pixel using non-maximal suppres-
sion. Non-maximal suppression means comparing pixels that are neighboring along
their gradient direction and suppressing those pixels with the lower gradient magni-
tude. Afterward, two thresholds are applied to the gradient magnitude to assign one
of three labels to each pixel: non-edge pixel, weak edge pixel, and strong edge pix-
els. All strong edge pixels will be present in the final edge map. Additionally, weak
edge pixels are classified as edge pixels, if they are connected to a strong edge pixel,
directly or via a chain of other weak edge pixels. All other pixels are suppressed.

2.2.3 Parameter-Free Canny Edge Detector

A parameter-free version of the Canny edge detector, named CannyPF, adaptively
sets the lower and higher thresholds that are applied to the gradient magnitude
image. CannyPF was published by Lu et al. as part of the line segment detection
method CannyLines [4] which is explained in Section 2.4.7.

In CannyPF, the lower and higher threshold are chosen adaptively based on the
input image. This is done by observing the histogram of gradient magnitudes of
the image and determining how likely the detection of false edge segments with a
certain length would be if the algorithm was run on an image consisting of only
white noise1. A detailed description of the steps of this computation can be found
in [4]. Apart from that, the CannyPF algorithm functions like the standard Canny
edge detector described in the previous section.

2.2.4 Edge Drawing

The Edge Drawing (ED) algorithm first selects a set of anchor points, that are most
likely edge pixels and then links them into edge segments. Its name derives from
the similar linking procedure in boundary completion puzzles, in which a person
draws an object by connecting given dots on the object’s outline [9]. ED was first
published as part of a line segment detection method named EDLines [9], which is
explained in Section 2.4.2.

First, the image is smoothed with a Gaussian filter and its gradient directions and
gradient magnitudes are computed for every pixel. Then, the anchor points are
determined by scanning the image vertically and horizontally. These are the points
at which the gradient magnitude reaches local maxima. The scanning procedure
allows to adjust the density of the detected anchor points by changing the scanning
intervals, i. e. the intervals between the vertical and horizontal lines that are

1This idea is based on the Helmholtz principle, which declares that an observed structure is mean-
ingful if its occurrence would be very rare in a random situation [8]. The Helmholtz principle is
also used by several line detection methods to validate whether a detection constitutes a false
positive. This validation step is explained in Section 2.5.1.
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scanned. This way, the number of detected details can be influenced. Finally,
isolated anchor points are linked to edge segments. Starting from an anchor point,
neighboring pixels in the linking direction are checked and the one with the highest
gradient magnitude is selected and added to the edge segment. The linking direction
is based on the gradient direction of the currently selected pixel. This process is
repeated from the new edge pixel until a pixel is selected which is either already
part of an edge segment or whose gradient magnitude is below a chosen global
threshold.

Due to this drawing process, ED results are more contiguous than those of some
other methods.

(a) (b) (c) (d)

Figure 2.1: Illustration of the ED process: (a) an input image, (b) the corresponding
gradient magnitude map, (c) the extracted anchor points, and (d) the
edge map created by drawing connections between the anchor points [9].

2.2.5 Globalized Probability of Boundary

The globalized probability of boundary (gPb) algorithm is a boundary detector
published by Arbelaez et al. [10]. It takes both local and global information into
account. Its result is a probability map, designating the probability of a pixel
belonging to a boundary. A boundary represents the change of ownership of a pixel
in an image from one object to another. While boundary detection is different from
edge detection, the resulting map can be used similarly. Therefore, gPb is grouped
together with edge detection methods in this thesis.

GPb is an expansion of the probability of boundary (Pb) detector published by
Martin et al. [11], which combines several local image features to create a probability
map. Four feature channels are taken into account by the Pb algorithm:

1. oriented energy2,

2. brightness gradient,

3. color gradient3, and
2Oriented energy [12] combines several local filters to define an energy function. The peaks of
this energy function correspond to edge-like discontinuities in brightness.

3The color gradient feature is not used in this thesis, as the CSDs are given as grayscale image.
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4. texture gradient4.

For every pixel position (x , y), the features are computed along a line through the
center of a circular image patch with radius σ, having (x , y) as its center. This is
done with eight equally spaced values for the angle of this line. In the gPb algorithm,
this procedure is expanded by observing not only one circular image patch around
every pixel, but three circular patches with σ

2 , σ and 2σ as their respective radius.
This enables the method to detect coarse as well as fine differences in the respective
feature channels. The distributions of the features channel values along each half
of the circular image patch are compared using a statistical dissimilarity measure.
At points that are likely to be located in a boundary, the different distributions
lead to higher dissimilarity values. A probability map Pb is obtained as a linear
combination of these values.

Additionally, gPb takes global image properties into account. For this purpose, the
computed features are represented as a weighted undirected graph. The nodes of the
graph are the points in the feature space. Between every pair of nodes, a weighted
edge is formed. The weight of these edges is a function of the similarity of the
nodes, i. e. the similarity of the represented features. In the gPb algorithm, the
intervening contour cue is used. This cue is defined as the maximum value of Pb
along a line connecting two pixels. An optimal partition of the graph is obtained by
minimizing the normalized cuts criterion [13]. This criterion measures the quality
of an image partition, i. e. the similarity between the different subgraphs and the
dissimilarity within subgraphs. The minimization of this criterion is formulated as an
eigenvalue problem. A second probability map sPb, which takes global information
into account, is obtained by using the determined eigenvectors. Through a linear
combination of Pb and sPb, the final probability map gPb is obtained.

A boundary map can be used for various applications. In [10], it is used to segment
natural images. In this thesis, a binary map is obtained from the probability-of-
boundary map by applying a threshold.

2.3 Voting-Based Line Detectors

The following methods define parameterized representations of lines and vote for
specific parameter pairs based on a given binary edge map.

The standard Hough transform (SHT) is the first of such methods, proposed by
Hough in 1962. An improved version was proposed by Duda and Hart in 1972
[14] and is presented in Section 2.3.1. Since then, many variations on the SHT
have been published. They mainly expand the original idea by proposing different
parameterizations and voting schemes. In this thesis, the kernel-based Hough trans-
form (KHT) and probabilistic progressive Hough transform (PPHT) are chosen as

4The texture gradient used in the Pb and gPb measures the degree to which the texture varies
at a specific image location along a given direction.
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a representatives of these variations and described in Sections 2.3.2 and 2.3.3.

The algorithm PCLines (see Section 2.3.4) is a special case as it uses parallel coor-
dinates but can be seen as an SHT variant.

2.3.1 Standard Hough Transform

The original SHT proposed by Hough uses a parameterization of lines by their
slope and intercept. It was shown by Duda and Hart [14] that the so-called normal
parameterization

x · cos(θ) + y · sin(θ) = ρ (2.3)
is advantageous because it allows every possible line in an image to be associated
with a point in a bounded parameter space, while the parameter space for slope and
intercept is unbounded. In this normal parameterization, θ is the angle between
the line’s normal and the x-axis. The parameter ρ is the line’s distance to the
coordinate center. Every point in the parameter space corresponds to a line in the
image space. For every edge pixel in the input image, several points in the parameter
space are associated as several potential lines could pass through that edge pixel.
The points associated with an individual point in the image form a sinusoidal curve
in the parameter space. These relations between the image and parameter space are
illustrated in Figure 2.2.

(a) (b)

Figure 2.2: Example of three colinear points p1, p2, and p3 in (a) cartesian coordi-
nates and in (b) Hough space. Note that the curves in the Hough space
intersect in a single point because the three points in the image space
are located on a single line.

The SHT receives a binary edge map as input and votes for the parameter pairs
associated with each edge pixel. This is done by increasing the counts in an accu-
mulator image that represents the parameter space. The peaks in this accumulator
correspond to the parameter pairs of the detected lines. Visually, these peaks corre-
spond to the intersections of the sinusoidal curves. This accumulation process is also
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called voting as the edge pixels “vote” for specific line parameters. By changing the
quantization of the parameter space, the allowed colinearity error of the detection
can be adjusted.

2.3.2 Kernel-Based Hough Transform

The KHT is a variation of the SHT published by Fernandes et al. [15]. It is
much more efficient than the SHT and more robust to the detection of spurious
lines, because of the use of an improved voting scheme. While a pixel votes for
every potential line passing through it in the SHT, the KHT identifies clusters of
approximately colinear edge points, associates each cluster to an elliptical kernel in
the parameter space, and votes only for selected lines according to the kernels.

The clusters of edge points are determined as follows. First, neighboring edge points
are linked together into chains of edge points. The chains are then subdivided into
smaller chains that correspond better to line segments. This subdivision is done by
recursively splitting a chain at the point which is most distant to the line segment
defined by the beginning and end point of the chain. When a minimum chain length
is reached, or when the created sub-chains do not provide a better fit to the line
segments than the parent chain itself, the recursive splitting process is stopped. At
this point, every created chain constitutes a cluster of approximately colinear edge
points.

For every cluster C , the best-fitting line l is computed using linear regression. The
authors provide a way of computing the parameters ρ and θ of the line l (correspond-
ing to the line parameterization given in equation (2.3)) as well as their empirical
variances σ2

ρ and σ2
θ , which represent the uncertainty associated with fitting l onto

C . C is associated to an elliptical-Gaussian kernel in the parameter space, using
the best fitting parameters (ρ, θ) as its center, σ2

ρ and σ2
θ to define the shape and

extension, and the covariance σρ,θ to define the orientation. The exact definition of
the kernel can be found in [15]. This is the kernel that gives the KHT its name.
In a culling step, some kernels are discarded if their center’s value is below a given
threshold. The authors show that these discarded kernels do not affect the detection
results much, but have a strong impact on the algorithm’s efficiency, as fewer points
in the parameter space need to be taken into account for the peak detection which
determines the final lines.

Since a kernel’s values outside of a neighborhood of its center (ρ, θ) are negligibly
small, parameter pairs associated with a value below a given threshold do not cast a
vote. The other parameters cast votes weighted according to the kernel values. The
voting map is smoothed using a 3×3 Gaussian kernel, to consolidate adjacent peaks
in the parameter space as single lines in the image space. Then, a list of all points
in the voting map that received at least one vote is created and sorted in descending
order. The peaks of the voting map are determined by visiting parameter pairs
following the order of this list. Parameter pairs with completely unvisited eight
neighbors so far are identified as the detected lines in the image space.
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2.3.3 Probabilistic Progressive Hough Transform

The PPHT is one of the most widely used adaptions of the SHT and was published by
Matas et al. [16]. It builds on other variations of the SHT. The probabilistic Hough
transform (PHT) performs SHT on a fraction of the input and can be viewed as
a Monte Carlo estimation of the SHT. Expanding on the PHT, the adaptive PHT
(APHT) monitors the accumulation process and terminates it when the desired
structures appear to have been detected. The PPHT is a specific form of APHT. It
is also a more computationally efficient version of the PHT as it allows a premature
termination of the voting process.

For long lines, only a small fraction of the supporting points need to vote for the line
to be detected, while a short line requires almost all supporting points to be detected.
The PPHT exploits this difference in the fractions of votes required to detect lines
with a different number of supporting points. This is done by dynamically controlling
the number of votes necessary to detect a line, as a function of the number of cast
votes. When a line is detected, supporting points that voted retract their votes, and
all supporting points are removed from the set of points that can still cast a vote.
This is done for the finite underlying line segment, not the infinite line described
by the given parameters. The finite line segment is extracted by analyzing the
supporting points on the infinite line and selecting the largest segment of edge points
that is either contiguous or does not exhibit a gap that exceeds a given threshold.

A consequence of this procedure is that the PPHT detects the most salient features
first. This can be useful if an early termination of the algorithm is desired for
efficiency.

2.3.4 PCLines

PCLines is a method for the detection of infinite lines published by Dubskà et
al. [17]. It is a voting-based method that uses a representation of lines in parallel
coordinates. Parallel coordinates are an alternative to the commonly used Cartesian
coordinates. In a parallel coordinate system, the components of a vector correspond
to points on mutually parallel axes, with each axis corresponding to one dimension.
Therefore, an n-dimensional vector is represented by n − 1 connected lines in the
parallel coordinate system5.

For the two-dimensional case, points that are colinear in Cartesian coordinates cor-
respond to lines that intersect in one point in parallel coordinates. However, an
intersection in the parallel coordinates, which corresponds to a detected line in the
image space, can potentially be located outside of any bounded area6. To mitigate

5For this reason, parallel coordinate systems are often employed for the visualization of high-
dimensional spaces, which would be unintuitive in Cartesian coordinates.

6In the parallel coordinate space, lines can also be parallel. In this case, they technically never
intersect. However, in [17] such lines are considered as lines which intersect in a point that is
infinitely far away from the axes of the parallel coordinate system.
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this, a third axis −y , which corresponds to the flipped y-axis, is added to the par-
allel coordinate system. In this new system, containing three axes, every possible
line in the image space corresponds to at least one intersection point that lies within
a bounded area of the parallel coordinate space. Figure 2.3 displays an example
containing two points p1 and p2 in (a) cartesian coordinates and (b) parallel coor-
dinates. The intersection of the lines in Figure 2.3 (b) corresponds to the line that
passes through the points p1 and p2.

(a) (b)

Figure 2.3: Example of two points p1 and p2 in (a) cartesian coordinates and (b)
parallel coordinates. Note that the addition of the −y-dimension is
necessary to determine an intersection.

Since lines in the image space correspond to points in the parallel coordinate space,
the latter can be used as an accumulator space, similar to the space spanned by θ
and ρ used in the SHT. It is quantized into a 2D image and every edge point in the
original image votes for the corresponding points in the accumulator image. Lines are
then detected as peaks in this accumulator image. A simple function for determining
the intersections of the detected line and the borders of the original image, based
on the detected line’s representation in the accumulator space, is provided by the
authors.

2.4 Region-Based Line Detectors

In contrast to the voting-based methods, the detectors described in the following
sections are based on determining regions of pixels that belong to an underlying line
segment, and then extracting the beginning and end point of the line segment from
this region.

2.4.1 Von Gioi’s Line Segment Detector

LSD is a method for detecting line segments published by von Gioi et al. [18]. In
this thesis, this method is referred to as LSD while the term line segment detector
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is used for all methods that detect (finite) line segments. The algorithm works by
growing pixels into regions and then validating or rejecting these regions.

The authors recommend scaling the input image to 80% of its original size. Scaling
the input image to a size that is smaller than the original leads to different results
because of artifacts caused by aliasing and quantization effects.

The regions that are proposed for the subsequent validation step are grown as follows.
First, the gradient magnitude and level-line angle7 are calculated for all pixels. Pixels
whose gradient magnitude is below a given threshold are ignored. The other pixels
are pseudo-ordered by assigning them to one of b bins depending on their gradient
magnitude. Pseudo-ordering via bins is advantageous because it is possible in linear
time while sorting algorithms usually require O(n log(n)) operations to order n
elements. Starting with a pixel from the highest bin, all unused neighboring pixels
that are not already part of a different region are added to the region if their level-
line angle matches the level-line angle θregion of the region up to a given tolerance.
θregion is continuously updated when new pixels are added to the region. This process
is then repeated for the neighboring pixels of the pixels that were newly added to
the region until no new pixels can be added anymore.

The created regions do not yet form straight line segments with distinct beginning
and end points but are just sets of pixels. To more accurately represent the under-
lying line segment, a rectangle approximation is associated with every region. This
is done by interpreting the region as a solid object and the gradient magnitude of
each pixel as the mass of that point. The rectangle center is then set to the center of
mass of the region and the main direction of the rectangle is set to the first inertia
axis of the region8. Finally, the length and width are set to the minimum values
such that the rectangle still contains all pixels of the region. Figure 2.4 shows an
exemplary region of pixels with its associated rectangle approximation.

Figure 2.4: A region of pixels with its associated rectangle approximation [18].

In the final step, the created regions and their associated rectangular approximations
are validated. This validation step is based on the Helmholtz principle. A validation

7The level-line angle is the angle orthogonal to the local gradient angle.
8This corresponds to the axis around which rotating the object at a given angular velocity would
require the least force. For example, the first inertia axis of a straight rod would be a line going
along the rod’s center.
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decision is made depending on the size of the rectangle and the number of pixels
in the rectangle whose level-line angle matches the main direction of the rectangle.
Other line segment detectors also contain a postprocessing validation step based on
the Helmholtz principle, which is described in more detail in Section 2.5.1. Since
the validation step in LSD is tightly linked to the data objects of the previous steps,
it is not considered as postprocessing step in this thesis. Every validated region
corresponds to a detected line having the intersections

The authors assert that an advantage of LSD is that the provided default parameters
work on a variety of different images without requiring any fine-tuning.

2.4.2 EDLines

EDLines is a line segment detector published by Akinlar et al. [9]. Its name stems
from the Edge Drawing method it employs (see Section 2.2.4).

For the extraction of a line segment, or even several line segments, from a given
chain of edges, lines are fitted onto the edge pixels using the least squares line
fitting method9. Starting with a short line consisting of a few edge pixels, new
pixels are added until the line fitting error exceeds a given threshold. At that point,
a new line segment is created and the extraction is recursively continued with the
remaining edge pixels. Note that this process requires the contiguous edge segments
as a list of pixel coordinates instead of a binary image. Therefore, ED cannot easily
be exchanged with another edge detector.

The detected line segments are validated in a final step based on the Helmholtz
principle (see Section 2.5.1).

The authors provide recommended default parameters for EDLines that were empir-
ically chosen based on a set of natural images but also state that other parameters
can be advantageous for some images.

2.4.3 Enhanced Line Segment Drawing

ELSED is a line segment detector published by Suàrez et al. [19]. It works similarly
to the EDLines algorithm described in the previous section, but includes line fit-
ting and drawing connections between anchor points into a combined method called
Enhanced Edge Drawing (EED). This method produces line segment candidates
without using an edge map as an intermediary result. Therefore, ELSED contains
no dedicated edge detection step which could be viewed as an isolated sub-method.
In the final validation step, false positives are filtered out of the line segment candi-
dates.

9Least squares line fitting means that for a given chain of edge points, a line is chosen such that
the average squared deviation of the points from the line is minimized.
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The EED algorithm begins by smoothing the input image with a Gaussian filter and
computing the gradient orientations and gradient magnitudes for all pixels. Gradient
magnitudes below a given threshold are set to 0. Gradient orientations are quantized
into either horizontal or vertical orientation. Then, anchor points are extracted by
scanning the pixels horizontally and vertically and determining pixels, with a local
maximum in the gradient magnitude and with matching gradient orientation and
scanning direction.

Drawing connections between the extracted anchor points is performed in a way
that combines following neighboring pixels with a high gradient magnitude, like in
the original ED algorithm, and fitting lines onto the pixels that have been drawn so
far. Therefore, EED creates straight line segments directly from the anchor points.
In comparison, ED creates chains of edge pixels that may change direction instead
of following a straight line. Consequently, ED requires an additional step to extract
the line segments from the edge chains.

ELSED uses Helmholtz validation (see Section 2.5.1) as a postprocessing step.

2.4.4 Line Segment Detection Using Slice Sampling and
Weighted Mean Shift Procedures

SSWMS is a line segment detector published by Nieto et al. [20]. It iteratively
proposes candidate pixels and then grows line segments out of these candidates.

In the first step, the likelihood p̂(x , y) belonging to a line segment is determined for
each pixel coordinate (x , y). This is done by computing a pixel’s gradient structure
tensor T and analyzing the eigenvalues of this tensor. The gradient structure tensor
T of a pixel is defined as:

T =
(

g2
x gxgy

gxgy g2
y

)
, (2.4)

where gx and gy are the partial derivatives in x- and y-direction at the given pixel.
An explanation of the general relationship between the tensor eigenvalues of the
gradient structure and the local structures in the image, such as lines and corners,
is given in [21]. The function used to determine the probability that a pair of
eigenvalues corresponds to a line is proposed in [20].

In the sampling stage, pixel candidates are selected for the line segment generation
process. For this purpose, an efficient strategy that sequentially draws samples for
the horizontal and vertical coordinates is used by the authors. It is based on a
general sampling algorithm named slice sampling (the SS in SSWMS). The sample
selection follows the probability distribution computed in the previous step, i. e.
pixel coordinates that are more likely to correspond to a line are more likely to be
proposed as candidates in this stage. Samples with an estimated likelihood lower
than the mean are ignored.

After a pixel candidate has been selected, it is passed to the line segment generation
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stage. In this stage, the pixel candidate is first refined, i. e. the candidate is
replaced with a nearby pixel that better represents the underlying line segment.
The authors propose a novel weighted mean shift procedure (the WMS in SSWMS)
to determine this pixel. Mean shift is an iterative algorithm to locate the maximum
of a density function from the sample data. In the WMS procedure, a twofold target
is maximized in a window surrounding the initial candidate pixel: the probability
of the pixel belonging to a line segment and the homogeneity of the estimated angle
orientation of the underlying line segment. This orientation is determined based on
the pixel’s gradient information. Pixels belonging to the same line are expected to
have similar orientations.

Starting from the refined point that was determined with the WMS procedure,
nearby pixels are connected following the mentioned estimated orientation. Each of
the added points is also refined using the WMS procedure. When the orientation of
a newly added refined pixel deviates too strongly from that of the other connected
pixels, the line segment generation is terminated and all the pixels belonging to the
line segment are marked as visited. After that, a new candidate pixel for the next
line segment is selected, ignoring the already visited pixels.

The algorithm can potentially be continued until all pixels have been visited. To
reduce the computational cost, it can also be terminated earlier, for example after
some iterations.

2.4.5 Joint Elliptical Arc and Line Segment Detector

ELSD is a method for the detection of both elliptical arcs and line segments pub-
lished by Pǎtrǎucean et al. [22]. It works by proposing a set of candidate regions,
then either accepting or rejecting these candidates during a validation step and fi-
nally selecting a model that best describes the underlying line segment or elliptical
arch for each candidate. The method builds upon LSD, which is described in Section
2.4.1.

The proposition of candidate line segment regions is done the same way as in the LSD
algorithm: starting from points with high gradients, regions that represent the line
segments are grown and a rectangle is fit around each of them. For the proposition of
elliptical arc regions, the authors propose a curve-growing algorithm in which region
growing and region chaining are alternated. This means that, instead of growing a
single straight line segment region, smaller straight segments are connected into a
curved segment. The curve-growing also works similarly to LSD, but the end point of
one grown straight region is used as a starting point for the next. An elliptical shape
is ensured by only chaining regions if the result is convex and roughly smooth, i. e.
the line segments constituting the arc have angles that do not differ too strongly.
Similar to the selection of an associated rectangle for line segments in LSD, ELSD
fits elliptical arcs around the regions. Additionally, circular arcs are proposed in a
similar way to the elliptical arcs.
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The validation of candidate regions is also done similarly to LSD: the expected
number of occurrences on an image consisting of only white noise is estimated and
the candidate is only accepted if this estimate is below a given threshold. This
expectation is called the number of false alarms (NFA). While a formula to compute
the NFA was given for line segments and their associated rectangles in LSD, ELSD
also provides formulas for candidate regions that correspond to circular or elliptical
arcs.

It can occur that more than one model is proposed for the same region. For example,
a region could be represented by both a non-circular elliptical arc and by a circular
arc. In this case, the model that best fits the underlying structure is selected. This
is done by choosing the model which possesses the smallest NFA value.

In [23], the authors propose a similar algorithm named ELSDc. It differs from ELSD
by using a continuous distribution for the noise model during the computation of the
NFA, rather than a discrete one. The authors showed that this continuous model
leads to better model selections on synthetic images of circles and polygons, altered
by different levels of Gaussian noise.

To compare the results of ELSDc with those of other methods, straight line segments
are extracted from the elliptical arcs in this thesis. This is done by choosing the
longest line segment that fits the elliptical arc up to a given error.

2.4.6 Fast Line Detector

FLD10 is a line segment detector published by Lee et al. [24]. It uses an edge map as
a starting point to grow edge pixels into line segments. In [24], the Canny algorithm
(see Section 2.2.2) is used for the creation of the edge map.

Closely located edge pixels are grown into a chain of pixels if they fit onto a line
up to a given error. This is done until all edge pixels have been visited. To close
gaps between associated chains, they are merged into final line segments if they are
overlapping or closely located and their orientation is sufficiently similar.

2.4.7 CannyLines

CannyLines is a line segment detector published by Lu et al. [4]. It begins by
extracting an edge map using CannyPF, which is described in Section 2.2.3. The
edge pixels are linked and split into line segments, which are then extended and
merged into longer, more complete line segments. In the final step, the line segments
are validated.
10The name “Fast Line Detector” is not used in the paper [24] itself but for the class

cv::ximgproc::FastLineDetector which provides an interface to the algorithm in the
OpenCV library.

21



2 Line Detection

Before the linking stage, all edge points are first sorted by their gradient magnitude.
Starting with the edge pixel that has the highest gradient magnitude, neighboring
edge pixels are linked if their gradient orientation matches. If a linked region is
larger than a given threshold, it is split at the point that maximally deviates from
the line segment. This splitting is done to ensure that regions belonging to different
underlying line segments remain separate. Least squares line fitting is then applied
to the linked region to obtain line segments with more accurate beginning and end
points. The lines are extended by searching for edge pixels that are closely located
to the end points and especially closely located in the direction orthogonal to the
line. If, during this extension process, an edge point of another line is met, the two
lines are merged if their angles are sufficiently similar and the least squares fitting
error of the merged line is sufficiently small. Thus, regions that were erroneously
split in the previous step can still be detected as a connected line segment.

The detected lines are validated using the Helmholtz principle. This step is described
in Section 2.5.1.

2.4.8 Yuan’s Line Segment Detector

Yuan et al. [25] published a line segment detection method that combines the
formation of regions based on the direction of the gradient with a voting-based
approach.

First, the gradient direction and magnitude are computed for each pixel. For pixels
with a gradient magnitude greater than a given threshold, the gradient directions
are sorted into n bins which are equally divided between 0◦ and 360◦. Using these
bins, contiguous regions with similar gradient orientations are formed. These are
called line support regions.

For each line support region, the gradient structure tensors (see Equation (2.4)
in Section 2.4.4) of all pixels are summed, and the eigenvectors of this sum are
computed. The eigenvector corresponding to the smaller of the eigenvalues indicates
the orientation θ of the line segment that underlies the line support region. This
orientation θ is the same parameter as in the parameterization of lines used by the
SHT in equation (2.3). The second parameter ρ, which corresponds to the distance
between the line and the coordinate center, is determined using a voting procedure
similar to the SHT. Each pixel in the line support region votes for a value of ρ with
the vote weighted by the local gradient magnitude of the pixel. The value with
the highest score is selected and the determined parameters define an infinite line.
Finally, a finite line segment is extracted by selecting the part of the infinite line
that overlaps with the associated line support region.
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2.4.9 Linelet-Based Detection

Cho et al. [26] published a line segment detector based on linelets. A linelet is
a horizontal or vertical group of connected edge pixels. The discretization in a
digital image causes line segments to have a staircase shape, and a linelet can be
considered as an individual stair in such a staircase. This concept is illustrated
in Figure 2.5. The linelet-based detector works by first detecting the individual
linelets, then grouping the closely located linelets and assigning a line segment to
each group. Afterward, the line segments are validated, and disjoint line segments
are merged if they are more likely to belong to a single line segment.

Figure 2.5: A line segment is broken into linelets l1 to l9 due to the discretization of
the image [26].

For the detection of the linelets, the gradient magnitude and orientation are com-
puted for each pixel, and non-maximal suppression is applied in such a way that the
resulting image only contains pixels that have the maximum gradient magnitude to
either their horizontal or vertical neighbors. From this image, linelets are extracted
as neighboring pixels having non-suppressed values in either horizontal or vertical
direction. Neighboring linelets are then grouped if they have the same direction
and their length difference is below a given threshold. For each linelet group, the
underlying line segment is identified.

During the validation step, the probability that a detected line segment belongs to
a true line is estimated. This process integrates the gradient information at the
linelets contained in the line segment and makes a final decision using a mixture of
expert models.

In a final aggregation step, separate line segments are connected if their aggregate is
more plausible than the individual line segments. For each line segment, aggregation
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candidates are determined based on the difference in line angle, the shortest distance
between end points, and the similarity of the lengths of the contained linelets.

Since the validation and aggregation steps make use of the linelets a given line
segment consists of, they are not considered as separate postprocessing steps in this
thesis.

2.5 Postprocessing

After the lines have been detected, a subsequent postprocessing step can improve
the results. Several such steps have already been described in the context of their
associated line detection methods in the previous sections. The following postpro-
cessing methods have been selected to be treated as individual methods as they allow
a combination with any other line detection step without significant overhead.

2.5.1 Validation Using the Helmholtz Principle

The Helmholtz principle states that a structure is perceptually meaningful if its
occurrence is very rare in a random situation [8]. Desolneux et al. [8] published a
general procedure that applies this principle to validate whether a set of pixels in
a binary image is likely to be meaningful. Various authors introduced specific line
segment validation algorithms based on this general procedure. The LSD algorithm
uses a version of this procedure that requires knowledge of a specific intermediary
result, the rectangle described in Section 2.4.1. However, versions used by EDLines,
ELSED, and CannyLines only require knowledge of the line segment to be validated
and the gradient of the original image.

In general, the validation procedure first computes the expected number of occur-
rences for the given structures in a random situation, i. e. a binary white noise
image. This expectancy is called the NFA. By comparing the NFA to a given
threshold, a validation decision is made.

For the line segment detection methods above, the NFA is computed by analyzing
the number k of line segment pixels with a gradient roughly orthogonal to the line
direction, in the context of the total number n of line segment pixels. In a random
environment, the probability for any line segment of n ′ pixels containing exactly k ′

aligned points is given by a binomial distribution:

P(k = k ′ | n = n ′) =
(
n ′

k ′

)
pk ′(1− p)n ′−k ′

. (2.5)

Since a line segment is defined by two points, an N×N image contains approximately
N 4 possible line segments. The exact number of possible line segments in an image
depends on factors like whether a swapping of beginning and end points leads to the
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same or two different line segments. In the context of this validation procedure, N 4

is accurate enough as an approximation, especially since a different approximation
can be accounted for by comparing the NFA to a different threshold. Therefore, the
expectancy of line segment occurrences of length n with at least k aligned pixels
can be computed as:

NFA(n, k) = N 4
n∑

i=k

(
n

i

)
pi(1− p)n−i . (2.6)

The value p in equations (2.5) and (2.6) depends on the maximum deviation that a
pixel’s gradient angle is allowed to have before it is considered to be not aligned with
the underlying line segment. The line segment is accepted if its NFA is below a given
threshold. If a large number of line segments or line segments from many different
images with the same dimensions need to be validated, the computational efficiency
can be increased by creating a lookup table that saves the smallest acceptable value
of k for every value of n .

In [18], it was shown that the fine-tuning of the threshold parameter is practically
not necessary because a wide range of thresholds will lead to the same or very similar
results for many images. Nonetheless, the selection of an optimal threshold value
for the CSD data set used in this thesis is described in Section 4.2.

The formula given in equation (2.6) is the one used in the EDLines algorithm [9].
LSD and CannyLines compute the NFA differently. LSD computes the NFA for
the rectangle that surrounds the line’s region and only takes those aligned pixels
into account whose gradient magnitude is above a threshold [18]. CannyLines takes
both the NFA of the line segment and the NFA of the underlying edge segment
into account [4]. The ELSED algorithm does not compute the NFA but simply
checks whether at least 50% of the pixels in a line segment are aligned correctly
[19]. Therefore, the validation step used by the ELSED algorithm does technically
not make use of the Helmholtz principle but functions very similarly.

2.5.2 Fast Segment Grouping

Fast Segment Grouping (FSG) is an algorithm for merging groups of line segments
published by Suàrez et al. [27]. In the original publication, FSG was used to improve
the results of the LSD algorithm, but it can also be used to postprocess the results of
any other line segment detector. The algorithm consists of two iterative steps. First,
a greedy proposer selects sets of line segments to be merged. Then, a subsequent
validation step checks whether the group’s line segments are likely to correspond to
a single underlying line segment.

Before grouping candidates are selected, the line segments are partially ordered by
their length, and a histogram of the orientations of the line segments is created.
Starting with the longest segment s that is not yet assigned to a group as the
base line segment, a circle of uncertainty is defined around the base line segment’s
beginning and end point. The base line segment and the corresponding circles of
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uncertainty are updated with each new addition to the group as described below.
These circles delineate cones in which the beginning or end point of an extension
candidate must be located. From the set of line segments fulfilling this condition
with an angle sufficiently similar to s , each element is considered a candidate. Then,
the probabilistic check described below is applied to determine whether a candidate
should be added to the group. This process is repeated until each line segment has
been assigned to a group (even if the group consists of only the segment itself).

The probabilistic validation used above considers the smallest bounding box that
encloses the candidate as well as every line segment in the group. Then the expected
number of occurrences of a box that encloses the same amount of line segments with
the same lengths is computed for a random situation, i. e. an image in which the
beginning and end points of the line segments have completely random locations.
This is similar to the computation of the NFA and a formula for this expectation
is provided in [27]. The decision is made by comparing this expectancy to a given
threshold.

After every addition of a new line segment to a group, the base line segment is
recalculated as follows. Using all beginning and end points of the line segments
in the group, an infinite line is fit using least squares. Onto this line, the furthest
beginning and end point in the group are projected. These two projected points
define the new base line segment of the group. A change in the base line segment
also leads to a change in the cones used to determine new candidates in subsequent
iterations. From the final groups, the respective base line segments are used as an
improved detection result. The original line segments are discarded.

2.5.3 Segmentation of Infinite Lines

Given an associated binary edge map, a simple method for the segmentation of
infinite lines is used in the PPHT algorithm. It analyzes the edge points in the
binary edge map that are located on the infinite line and selects the longest segment
that is either contiguous or whose gaps have a length that does not exceed a given
threshold.

In PPHT, this line segmentation step cannot be separated from the voting process
because only the points which are located on the line segment are excluded from
subsequent voting iterations. However, it can easily be applied to other infinite
line detectors as long as a binary edge map is provided. All infinite line detectors
discussed in this thesis use such an edge map.

A limitation of this approach is that it extracts a single line segment from every
infinite line, even though an infinite line could be composed of several separate
finite line segments. This does not pose a problem in the case of PPHT because the
edge points located on the smaller segments can vote again in subsequent iterations.
However, it can lead to the wrongful exclusion of shorter line segments if the method
is applied as a separate postprocessing step after the detection of infinite lines has
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already been completed. Therefore, an adapted version is proposed here. After
extracting the longest segment, shorter segments are extracted if they fulfill the
same conditions and their length is above a given threshold.
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3 Methods for the Evaluation of
Edge and Line Segment Detectors

A method for quantifying the quality of the detection results is required to enable
the automatic optimization of the parameters and an accurate comparison of the
results achieved by the different detectors. In the following sections, two different
evaluation methods are presented. Both methods work by comparing the detection
results to ground truth data for a given input image.

A description of the ground truth data set is given in Section 3.1. The software
interfaces for the detection and postprocessing methods are described in Section 3.2.
In Section 3.3, a method for the evaluation of edge detector results is presented. This
method is based on comparing the individual pixels of the ground truth data and
the detected edge map. The method presented in Section 3.4 evaluates the results
of line detectors and is based on comparing individual line segments.

3.1 Ground Truth Data Set

The data set used in this thesis consists of 53 manually labeled CSD images, having
an 8-bit data type and 100x100 pixels. These images were categorized into four
classes, ranging from very high-quality data with weak noise and distinct lines to
low-quality data with strong noise and very weak lines. In the following, these
classes will be referred to as “very high quality”, “high quality”, “mediocre quality”
and “low quality”. An example CSD for each class is given in Figure 3.1.

From each class, four CSDs were randomly selected for the parameter optimization.
This was done to ensure that the optimization data set represents the different
levels of quality present in the underlying data. The remaining data constitutes the
validation data set, which is used to evaluate the final results in Chapter 5.
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3 Methods for the Evaluation of Edge and Line Segment Detectors

(a) (b)

(c) (d)

Figure 3.1: Examples of CSDs from the optimization data sets of (a) very high, (b)
high, (c) mediocre, and (d) low quality.

(a) (b) (c)

Figure 3.2: Example of a CSD (a) before processing, (b) after applying the BM3D
filter, and (c) after additionally applying the median filter.

To improve the quality of the data, each image was processed with edge-preserving
smoothing algorithms. First, the BM3D filter is applied. For a CSD data set that
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is similar to the one used in this thesis, Fleitmann et al. [28] evaluated that BM3D
is preferable to other smoothing algorithms and leads to a strong reduction of noise
while preserving the edges. However, there are stripes in the CSD images that the
evaluation of Fleitmann et al. [28] does not account for. These stripes are due to the
measurement process which happens as a series of 1D sweeps over a voltage range
while the voltage of the other gate remains constant. A 1D median filter is employed
to weaken these stripes. Figure 3.2 displays (a) a CSD before smoothing, (b) after
applying the BM3D filter, and (c) after additionally applying the 1D median filter.

Formally, the manually created ground truth labels for each image are given as a
list of 4-tuples li = (xb,i , yb,i , xe,i , ye,i), i = 1, . . . ,L, i. e. a list of line segments li
with the points (xb,i , yb,i) and (xe,i , ye,i) as the coordinates of their beginning and
end points.

3.2 Software Interfaces for the Detectors

To execute the detection methods on the CSD images, implementations by the
respective authors or third parties are used. Table 3.1 displays the language and
source of these implementations. To evaluate and compare the detection methods in
a structured manner, interfaces in the Python programming language are created to
wrap the various implementations. The return values of the line segment detectors
are unified to represent the line segments as 4-tuples as described in Section 3.1.
Similarly, infinite lines are represented as line segments whose beginning and end
points are located on the image borders. Line segments that are shorter than five
pixels are automatically discarded because all ground truth lines are significantly
longer and very short lines are especially often false positives. Additionally, the
given interfaces are adapted to use quantiles instead of absolute values for those
parameters that threshold the gradient magnitude. This was done to account for
the different distributions of the gradient magnitude that are present in different
images. For this purpose, the gradient magnitude is computed using the Sobel
operator as described in Section 2.2.1.

3.3 Pixel-Based Evaluation

Most edge detectors produce a binary image as output, in which the edge pixels
can be scattered or are not contiguous. Therefore, a method for the evaluation of
edge detectors has to be able to take scattered individual pixels into account. This
method determines the average score of correctly classified edge pixels per ground
truth line segment and subtracts an error term based on the amount of false positive
edge pixels.

The ground truth data is first transformed into a multiclass image

IT : {0, . . . ,N } × {0, . . . ,M } → N0,
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Table 3.1: Interfaces for the edge detectors, line detectors, and postprocessing meth-
ods.

Method name Language Source
GMT Python Implemented by the author
Canny Python [29]
CannyPF C++ [30]
Edge Drawing Python [31]
gPb C++ [32]
SHT Python [33]
KHT C++ [34]
PPHT Python [35]
PCLines Python [36]
LSD Python [37]
EDLines Python [31]
ELSED C++ [38]
SSWMS C++ [39]
ELSDc C [40]
FLD Python [41]
CannyLines C++ [30]
Yuan Matlab [42]
Linelet Matlab [43]
Helmholtz Python Implemented by the author
FSG C++ [44]
Segmentation Python Implemented by the author

in which every pixel belonging to line segment li has the value i and the pixels not
belonging to any line segment have the value 0. For this purpose, the line segments
are assumed to not overlap. By changing the width of the line segments to be
larger than one pixel, the evaluation method allows a certain error margin. This
is especially useful since the position of a line segment can be slightly inaccurate
in the manually labeled data. Additionally, the amount of pixels the line segment
contains without margin is denoted as ai . Since this multiclass image needs to be
created only once and can be reused, for example in subsequent optimization steps,
the overhead caused by this step is negligible. An example of a multiclass image is
displayed in Figure 3.3. The edge map created by the detector is given as a binary
image

ID : {0, . . . ,N } × {0, . . . ,M } → {0, 1},

in which edge pixels have the value 1 and non-edge pixels have the value 0.
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(a) (b)

Figure 3.3: Example of (a) the original CSD with the ground truth lines marked in
green, and (b) the corresponding multiclass image with a margin of one
pixel on each side of the line.

From these images, the percentage pi of correctly detected pixels is determined for
every ground truth line segment li :

pi = min
{
|{(x , y) : ID(x , y) = 1 ∧ IT(x , y) = i}|

ai
, 1
}
, (3.1)

where |X | denotes the cardinality, i. e. the number of elements, of the set X . Taking
the minimum of the percentage and 1 is necessary because an edge detector could
“correctly” classify more pixels than the line segment contains due to the margin
in the ground truth image. A limitation of this approach is that pi can potentially
be close to 1 due to the margin, even though parts of a line segment are missed.
Qualitative analysis of the edge detection results on the optimization data set shows
that this does practically not occur. However, a consequence of this limitation is
that this evaluation method is slightly biased towards detectors that create thick
edges wider than one pixel, such as GMT, as opposed to detectors that create thin
edges having a width of one pixel, such as Canny.

The percentages pi are then non-linearly transformed because the usefulness of an
edge detector does not scale linearly with the percentage of correctly identified edge
pixels. For example, detecting only half of all edge pixels in a given line segment
can be sufficient to create acceptable results in a subsequent line detection step, and
should therefore be assigned a higher score than 0.5. The square root is chosen for
this non-linear transformation and the mean p̄ of the transformed percentages is
computed:

p̄ = 1
L

L∑
i=1

√
pi . (3.2)

An example of the benefit of this transformation is given in Figure 3.4. Two different
edge maps for the same CSD are displayed. The five ground truth lines are marked in
green in Figure 3.4 (a). In the edge map in Figure 3.4 (b), the edges corresponding
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to one line are detected perfectly, leading to a value of pi = 1, while the edges
corresponding to the other four lines are not detected at all, leading to values of
pj = 0. This results in a score of p̄ = 0.2. In the edge map in Figure 3.4 (c),
approximately 20% of the edge pixels corresponding to every line are detected. This
leads to values of pi ≈ 0.2 and a score of p̄ ≈

√
0.2 ≈ 0.447. Since the second edge

map is more useful to a subsequent line detection step, the higher p̄ score it receives
is justified. However, without the non-linear transformation of the pi values, both
edge maps would receive approximately the same score.

(a) (b) (c)

Figure 3.4: Example demonstrating the benefit of non-linearly transforming the pi
values: (a) a CSD with the five ground truth lines marked in green, (b)
a corresponding edge map with the edges of one line detected perfectly
and the other four lines not detected at all, and (c) an edge map in
which roughly 20% of edge pixels were detected for every line. Without
applying the square root to the pi values, both edge maps would receive
approximately the same evaluation score despite the edge map in (c)
being more useful for a subsequent line detection.

The value p̄ takes the true positive and false negative pixels into account but not the
false positive pixels. For nTP, nFN, and nFP as the respective numbers of detections
in the edge map ID, an error term EFP is defined as

EFP = min
{
p̄,

nFP

2(nTP + nFN)

}
. (3.3)

The final evaluation score is then calculated as

p̄ − EFP. (3.4)

This score is 1 for a perfect edge map, in which all edge pixels were detected and
no false positive detections are present, and 0 for an unusable edge map, in which
no edge pixels were correctly classified or in which several false detections for every
correct detection exist.

The efficiency of the method could be improved by computing only a single percent-
age p for all line segments combined. However, such an evaluation would strongly
favor long line segments over shorter line segments as they contain more pixels.
Favoring longer lines is not desired for the application that motivates this thesis.

34



3.4 Segment-Based Evaluation

Since a binary image ID could be created from a given list of detected line segments,
the presented method could also be used to evaluate a line segment detector.

3.4 Segment-Based Evaluation

As explained in Section 1.4, the main goal of this thesis is to determine which
approaches are most robust for detecting many lines at least partially and without
too many false positives. Detecting a line that is too short or too long, up to a
given threshold, is therefore not punished by the evaluation method presented in
this section. Instead, each line segment will receive a binary evaluation: either it is
detected correctly, or it is not. The method determines the numbers of true positive
(TP), false positive (FP), and false negative (FN) line segments and quantifies the
quality of the detection results using the F1 score. The following description of the
method is aimed at finite line segments. However, it can also be applied to the
evaluation of infinite lines. For this purpose, the infinite lines are simply treated as
finite line segments whose beginning and end points are located on the image borders,
and the ground truth line segments are extended to also have their beginning and
end points located on the image borders.

First, it needs to be defined under which conditions a detected line segment dj =
(x (d)

b,j , y
(d)
b,j , x

(d)
e,j , y

(d)
e,j ) matches a line segment li in the ground truth data. Such a

match occurs if the following conditions are fulfilled:

1. the angles αdj and αli of dj and li differ by at most r radians,

2. in the direction orthogonal to li , the beginning and end points of dj have a
maximum distance of k pixels from li ,

3. in the direction parallel to li , the beginning and end points of dj deceed those
of li by at most n%, and

4. in the direction parallel to li , the beginning and end points of dj exceed those
of li by at most m%.

For conditions 3. and 4., the maximum allowed distances are n% and m% of the
length of the ground truth segment li . To check the first condition, the angle is
computed as

αdj = arctan
y

(d)
e,j − y

(d)
b,j

x
(d)
e,j − x

(d)
b,j

 (3.5)

for every detected line segment and similarly for the ground truth line segments.
The result is a value between −π and π. The angles αdj and αli match if either:

1. |αdj − αli | ≤ r , or

2. |π − |αdj − αli || ≤ r .
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For all matching line segments, the first case will be assumed in the following. The
first case can always be produced from the second one by flipping the beginning
and end points in one of the segments. It makes sense to check this condition first
for any given possible match because it is more efficient to check than the other
conditions.

The other conditions are checked by analyzing the vector

~vi ,j =
 x

(d)
b,j − xb,i
y

(d)
b,j − yb,i

 (3.6)

spanned from the beginning point of li to the beginning point of dj . The relative
distance of the beginning points in the direction parallel to li is computed as the
scalar projection:

si ,j = vi ,j · wli

‖wli‖2
2

with ~wli =
(

xe,i − xb,i
ye,i − yb,i

)
. (3.7)

In this equation, ~wli represents the vector spanned from the beginning to the end
point of li . The distance si ,j is relative to the length of the line segment li . For
example, if the detected beginning point was directly in the middle of the ground
truth line segment, si ,j would be 0.5. The value of si ,j can be positive, negative, or
zero.

1. Case si ,j > 0: this means a part of the ground truth line segment li failed to
be detected. In this case, a match occurs if si ,j < n%.

2. Case si ,j < 0: this means the detected beginning point exceeds the ground
truth line. A match occurs if si ,j > −m%.

3. Case si ,j = 0: the detected beginning point does neither deceed nor exceed the
ground truth line.

Additionally, the distance oi ,j of the detected beginning point in the direction orthog-
onal to the ground truth line must be taken into account This distance is computed
as:

oi ,j = ‖~vi ,j − si ,j · ~wli‖2. (3.8)
This is the scalar rejection. An illustration of an example ground truth line l1 and
two detected lines dj , with the resulting vectors and distances used in the evaluation
method, is given in Figure 3.5.

The vector spanned from the end point of li to the end point of dj is checked likewise.
If a detected line segment fulfills all conditions for one of the ground truth line
segments, it is considered to be a TP. Several detected line segments that match
the same ground truth line segment are counted as one single TP. Detected line
segments that do not have a matching line segment in the ground truth data are
considered as FP. Every ground truth line segment without a detected line segment
match is counted as FN. From these values, the quality of the detection can be
quantified via precision, recall, and the F1 score.
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The precision of a detector is the percentage of correctly detected lines within the
set of all detections. It can be computed as:

P = TP

TP + FP
. (3.9)

A detector’s recall is defined as the percentage of correctly detected lines within the
set of all lines in the ground truth. This value can be computed as:

R = TP

TP + FN
. (3.10)

Figure 3.5: Example of the vectors and distances used in the segment-based evalua-
tion algorithm. The green vector ~wl1 represents a true line. The vectors
~d1 and ~d2, representing two detected lines, are marked in blue. Marked
in orange are the vectors ~v1,j spanned from the beginning point of the
true line to the beginning point of the detected lines. From these vectors,
the distances between the true beginning and both the detection in the
direction parallel to the true line (s1,j , magenta) and orthogonal to the
true line (o1,j , gray) are determined.

Both precision and recall are important metrics for the evaluation of a detector.
It is insufficient to evaluate only one of them because precision does not take into
account the FN, i. e. lines that were not detected, and recall does not take into
account the FP, i. e. false detections. Therefore, a compromise between precision
and recall has to be made. The F1 score quantifies such a compromise as a scalar
value between 0 and 1. It is defined as:

F1 = 2 P · R
P + R

. (3.11)
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In the worst case, all detected line segments have to be compared to all ground truth
line segments. This can make the evaluation inefficient on some images. For the
CSD data set, the number of ground truth line segments is always small1. Therefore,
the efficiency of the algorithm is acceptable for the data used in this thesis.

1The highest number of line segments for an image in the used data set is eight. Most images
contain even less line segments.
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The edge and line detection methods presented in Chapter 2 have several free pa-
rameters. Manually selecting the optimal parameters for the CSD data set can be
very time-consuming. Therefore, optimal parameters are automatically determined
in this thesis. This was done using the differential evolution algorithm [45] and the
evaluation methods described in Sections 3.3 and 3.4 to maximize the goodness on
a manually labeled data set.

Differential evolution is a minimization method that does not require the objective
function to be differentiable and therefore does not require a gradient of the objective
function. It works by stochastically generating trial parameter vectors by mutating
the elements within a population of vectors. Since differential evolution is a min-
imization method, it is applied to the negative evaluation scores. Each parameter
requires real-valued constraints. Differential evolution is defined for real-valued vec-
tors, but some of the described methods use integer parameters. In this thesis, this
is solved by rounding these parameters to the nearest integer before applying them
to the detection method. Consequently, the objective function is not continuous in
these cases.

The results for the parameter optimization process on the edge detectors, line de-
tectors, and postprocessing methods are given in Sections 4.1 and 4.2.

4.1 Optimization Results for Edge and Line Detectors

The free parameters for the edge detection methods are optimized by maximizing
the average score of the pixel-wise evaluation, as described in Section 3.3, over the
optimization data set. For the ground truth lines in the multiclass image IT, a
line thickness of three pixels is chosen. Therefore, detected edge pixels are allowed
to deviate by a distance of one pixel from the ground truth lines. The resulting
optimized parameters are given in Table 4.1.

The ranges within which the parameters are optimized are determined experimen-
tally.

For the gPb, only the quantile for the probability threshold is optimized because
of the high run time of the algorithm. The default parameters suggested by the
authors are used for the radius length σ and for the coefficients used to combine the
feature channels.
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Table 4.1: Edge detector parameters with their data types, ranges, and optimized
results.

Method Parameter Type Range Result
GMT Quantile for gradient threshold real [0.7; 1.0] 0.99

Canny Quantile for lower gradient threshold real [0.7; 1.0] 0.91
Quantile for higher gradient threshold real [0.8; 1.0] 0.9996

CannyPF Vision-meaningful parameter1 real [200; 700] 463

ED
Quantile for gradient threshold real [0.7; 1.0] 0.74
Quantile for anchor threshold real [0.8; 1.0] 0.93
Scan interval integer [1; 5] 1

gPb Quantile for probability threshold real [0.7; 1.0] 0.99

Similarly, free parameters for the line detection methods are optimized by maximiz-
ing the average F1 score, as described in Section 3.4, over the optimization data set.
For this purpose, the values r = 0.15 radians, k = 3, n = 70%, and m = 15% are
used.

Detectors that require an edge map as input are combined with the CannyPF edge
detector. CannyPF is chosen because it leads to better results than the other edge
detectors evaluated in this thesis, as explained in Section 5.1. An exception is the
EDLines algorithm, which uses ED, as it requires its input edges to be grouped into
edge chains.

The resulting optimized parameters for the voting-based detection methods are listed
in Table 4.2. It can be observed that the numbers of discrete angles used by KHT
and PPHT are much higher than those of SHT and PCLines. This shows that
the improved voting schemes of these methods allow voting within a more detailed
parameter space.

Table 4.2: Parameters of voting-based line detectors with their data types, ranges,
and optimized results.

Method Parameter Type Range Result

SHT Number of discrete angles integer [50; 100] 70
Voting threshold integer [40; 90] 76

KHT

Minimal cluster size integer [5; 20] 12
Minimal kernel height real [10−4; 0.1] 0.05
Number of discrete angles integer [90; 1800] 760
Voting threshold integer [40; 90] 76

PPHT
Maximum gap between pixels of a line integer [5; 20] 5
Number of discrete angles integer [90; 1800] 1214
Voting threshold integer [5; 20] 12

PCLines Quantile for gradient threshold real [0.8; 1] 0.97
Accumulator resolution integer [64; 256] 234

1The vision-meaningful parameter of the CannyPF algorithm is used for the validation of edge
segments. Its exact purpose is beyond the scope of this thesis.
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For the region-based line detection methods, the results of the optimization process
are listed in Table 4.3. It can be observed that the optimized scaling factor of
81% for the LSD algorithm is very close to the factor of 80% which the authors
recommend.

Table 4.3: Parameters of region-based line segment detectors with their data types,
ranges, and optimized results.

Method Parameter Type Range Result

LSD Scaling factor real [0.5; 1] 0.81
Angle tolerance for NFA real [1; 50] 8.3

EDLines Line fitting error threshold real [0.5; 5] 1.5

ELSED Quantile for gradient threshold real [0.5; 1] 0.90
Scan interval integer [1; 5] 4

SSWMS Accuracy integer [5; 15] 9
Maximum number of lines integer [5; 15] 9

ELSDc Angle tolerance for NFA (degrees) real [1; 50] 12.2
FLD Maximum distance of point to line real [0.5; 2] 0.78
Yuan Quantile for gradient threshold real [0.5; 1] 0.78
Linelet Quantile for gradient threshold real [0.5; 1] 0.78

4.2 Optimization of Postprocessing Methods

The parameters for the validation method using the Helmholtz principle, which is
described in Section 2.5.1, are not optimized for the validation of the results of any
specific line detector. Instead, the parameters are optimized for the validation of a
set SH of line segments which contains both ground truth line segments and randomly
created false line segments. For each image in the optimization data set, SH contains
as many randomly created false line segments as true line segments. These false line
segments are created by randomly selecting coordinates for the beginning and end
points from a uniform distribution. It is ensured that none of the randomly created
line segments match any of the ground truth line segments by the criteria used to
match line segments in the segment-based evaluation method (see Section 3.4). An
example image with the ground truth lines marked in green and the false, randomly
created lines marked in red is displayed in Figure 4.1. The F1 score (see Section
3.4) of the resulting line segments is maximized by the optimization algorithm.
The threshold the NFA (see Section 2.5.1) is compared to can be selected from a
wide range, including both very large values and values close to 0. Therefore, the
threshold is defined in the form 10t , with t being the parameter that is optimized
by the algorithm.

For the parameter optimization of the line segmentation method described in Section
2.5.3, the used binary edge maps are created from the ground truth line segments
instead of using any of the edge detection methods. The creation of these edge maps
is done by drawing the ground truth line segments with a width of one pixel onto
a binary image. Then, E% of edge pixels were randomly removed to simulate the
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4 Parameter Optimization

Figure 4.1: Example of a CSD used for the parameter optimization of the Helmholtz
validation method. The ground truth lines are marked in green and the
false, randomly created lines are marked in red.

imperfect detection quality of edge detection methods. Examples of such edge maps
are displayed in Figure 4.2. As an optimal parameter for the maximal gap between
edge pixels, the minimal value, which leads to a perfect reconstruction of the finite
line segments from their corresponding infinite lines, is chosen. The selection of this
value is done manually to ensure that the minimal value is selected.

The results of the parameter optimization for the postprocessing methods are given
in Table 4.4. For the line segmentation method, an optimal parameter is determined
for E = 25%, E = 50%, and E = 75%, respectively. The optimized parameter for
the NFA threshold is 10−0.37 ≈ 0.43. The FSG algorithm has no free parameters
that need to be optimized.

Table 4.4: Parameters of postprocessing methods with their data types, ranges, and
optimized results. No ranges are given for the segmentation parameters
because they are chosen manually.

Method Parameter Type Range Result

Validation Number of quantized angles integer [4; 16] 4
NFA threshold (as exponent) real [−10; 10] -0.37

Segmentation
Maximum gap (E = 25%) integer n. a. 5
Maximum gap (E = 50%) integer n. a. 6
Maximum gap (E = 75%) integer n. a. 15
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(a) (b)

(c)

Figure 4.2: Examples of binary edge maps with (a) 25%, (b) 50%, and (c) 75% of
edge pixels removed.
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5 Results

This chapter presents the results produced by the detection and postprocessing
methods and discusses their practical implications. In Sections 5.1 to 5.3, the eval-
uation scores on the optimization and evaluation data sets are analyzed for the
edge detectors, line detectors, and postprocessing methods, respectively. Section
5.4 describes the implications for the analysis of CSDs.

5.1 Edge Detection Results

The results for the edge detection methods using optimized parameters on the opti-
mization data set and validation data set are displayed in Table 5.1. The evaluation
scores are determined using the method described in section 3.3. In addition to the
final evaluation score p̄ − EFP, the individual values for the mean p̄, which is based
on the percentage of correctly detected edge pixels per ground truth segment, and
for the error term EFP, which is based on the false positive edge detections, are
given.

It can be observed that CannyPF receives the best scores on the optimization data
set. On the validation data set, CannyPF is outperformed by other detectors on
images of mediocre quality. However, no detector delivers results that are practically
usable on images of mediocre or low quality. It should also be noted that the
evaluation method is slightly biased towards a method that detects thick edges, such
as GMT. Additionally, the individual values for p̄ and EFP indicate that CannyPF
produces more correct detections at the cost of more incorrect detections than other
methods. Such a behavior is desirable for the application that motivates this thesis,
because correctly detecting as many lines as possible is critical for the analysis of
CSDs, while false detections can be accounted for by subsequent steps. This confirms
the choice of CannyPF as the most useful edge detector, even though no detector
consistently shows the best results on every data set.

Overall, the results for the optimization data set are roughly equal to those for
the validation data set. The five cases in which the optimization data set receives
a significantly better (at least 0.1 higher) score are likely to be due to the small
number of images in each data set. This also explains both the cases in which the
validation data set receives a better score than the optimization data set and in
which a data set of lower quality receives a higher score than a data set of higher
quality on the same detector.
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Table 5.1: Edge detector results for the optimization and validation data sets. The
detectors are ordered by the evaluation score on the validation data set.

Optimization data Validation data
Data quality Method name p̄ EFP p̄ − EFP p̄ EFP p̄ − EFP

Very high

Canny 0.70 0.03 0.67 0.79 0.03 0.76
CannyPF 0.80 0.06 0.74 0.84 0.09 0.75
GMT 0.79 0.09 0.70 0.78 0.08 0.70
gPb 0.47 0.05 0.42 0.59 0.02 0.57
ED 0.63 0.02 0.61 0.51 0.03 0.48

High

CannyPF 0.84 0.15 0.69 0.78 0.22 0.56
GMT 0.70 0.18 0.52 0.63 0.10 0.53
Canny 0.79 0.13 0.66 0.55 0.06 0.49
ED 0.62 0.01 0.61 0.48 0.03 0.45
gPb 0.65 0.03 0.62 0.34 0.02 0.32

Mediocre

GMT 0.53 0.38 0.15 0.52 0.26 0.26
Canny 0.13 0.03 0.10 0.23 0.05 0.18
ED 0.12 0.05 0.07 0.20 0.06 0.14
CannyPF 0.22 0.00 0.22 0.27 0.14 0.13
gPb 0.09 0.09 0.00 0.14 0.11 0.03

Low

CannyPF 0.11 0.11 0.00 0.23 0.15 0.08
ED 0.00 0.00 0.00 0.10 0.06 0.04
gPb 0.07 0.07 0.00 0.28 0.26 0.02
GMT 0.13 0.13 0.00 0.28 0.28 0.00
Canny 0.04 0.04 0.00 0.09 0.09 0.00

(a) Ground truth (b) GMT (c) Canny

(d) CannyPF (e) ED (f) gPb

Figure 5.1: A CSD with (a) ground truth lines and (b-f) the binary edge maps
produced by the edge detectors.
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A qualitative analysis confirms the quantitative results. Additionally, it can be
observed that the edges detected by Canny, CannyPF, and ED are longer and con-
tiguous, while those detected by GMT and gPb often consist of scattered individual
pixels in some areas and thick edge segments in other areas. Figure 5.1 displays the
edge detection results for an example CSD.

A comparison between GMT and gPb shows that thresholding the gradient magni-
tude image produces better results than thresholding the probability map created
by gPb. Figure 5.2 displays (a) a gradient magnitude image created using the Sobel
operator, and (b) the probability map created using gPb. It can be observed that
both maps are disturbed by the noise present in the underlying image, but gPb more
strongly than the gradient magnitude map.

(a) Gradient magnitude (b) gPb

Figure 5.2: Example of (a) a gradient magnitude map created using the Sobel oper-
ator, and (b) the probability-of-boundary map created using gPb.

For the images of mediocre and low quality, no edge detector produces usable results,
as examplarily shown in Figure 5.3.

(a) (b)

Figure 5.3: Example of (a) a CSD of low quality and (b) the unusable edge map
produced by CannyPF.
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5.2 Line Detection Results

The results for the voting-based line detection methods using optimized parameters
and the edge map created by CannyPF, are displayed in Table 5.2. The values for
precision, recall, and F1 score are determined using the evaluation method described
in section 3.4 and averaged over the images in the data sets. For the SHT, KHT, and
PCLines algorithms, the results were additionally segmented to acquire finite line
segments. A maximum gap of six pixels is used for the segmentation algorithm. As
the results in Section 5.3 show, the choice of this parameter has a negligible impact
on the quality of the line segmentation.

Table 5.2: Voting-based line detector results for the optimization and validation data
sets. The detectors are ordered by the F1 score on the validation data
set.

Optimization data Validation data
Data quality Method P R F1 P R F1

Very high

PPHT 0.72 0.57 0.63 0.66 0.61 0.60
KHT (segmented) 0.94 0.43 0.56 0.86 0.43 0.57
SHT (segmented) 0.50 0.15 0.23 0.56 0.18 0.26
PCLines (segmented) 0.50 0.22 0.31 0.42 0.10 0.16

High

PPHT 0.62 0.89 0.65 0.45 0.53 0.44
KHT (segmented) 0.48 0.53 0.50 0.41 0.29 0.31
SHT (segmented) 1.00 0.61 0.68 0.40 0.13 0.20
PCLines (segmented) 0.25 0.06 0.10 0.35 0.15 0.20

Mediocre

PPHT 0.14 0.12 0.13 0.22 0.17 0.15
KHT (segmented) 0.25 0.09 0.14 0.18 0.15 0.12
SHT (segmented) 0.25 0.03 0.06 0.17 0.06 0.06
PCLines (segmented) 0.12 0.03 0.05 0.04 0.02 0.03

Low

PPHT 0.03 0.12 0.04 0.12 0.19 0.12
KHT (segmented) 0.03 0.25 0.05 0.08 0.32 0.12
SHT (segmented) 0.00 0.00 0.00 0.00 0.00 0.00
PCLines (segmented) 0.00 0.00 0.00 0.00 0.00 0.00

In regards to the recall values, the KHT and PPHT algorithms produce better
results than the other voting-based methods. This can be explained by the KHT’s
and PPHT’s improved voting schemes, which make the algorithms better at the
detection of short lines in the CSD data. The PCLines algorithm produces very
poor results in terms of both precision and recall.

For the region-based line detectors, the precision, recall and F1 score values are
listed in Table 5.3 using the optimized parameters. The difference to default pa-
rameters is discussed below. In terms of the F1 scores, CannyLines produces the
best detection results for data of high and very high quality. ELSDc achieves com-
parable recall values, but has a much lower precision. CannyLines also outperforms
all of the voting-based line detection methods. Therefore, CannyLines is the prefer-
able method for the data used in this thesis. For a selection of line detectors, the
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detection results on an example CSD are displayed in Figure 5.4.

Table 5.3: Region-based line detector results for the optimization and validation
data sets using optimized parameters. The detectors are ordered by the
F1 score on the validation data set.

Optimization data Validation data
Data quality Method P R F1 P R F1

Very high

CannyLines 0.90 0.62 0.73 0.90 0.75 0.80
LSD 0.88 0.55 0.65 0.87 0.52 0.61
ELSED 0.61 0.53 0.51 0.56 0.65 0.54
FLD 0.52 0.25 0.31 0.79 0.43 0.53
Linelet 0.56 0.47 0.49 0.47 0.43 0.43
ELSDc 0.63 0.85 0.64 0.21 0.76 0.30
Yuan 0.23 0.15 0.17 0.18 0.22 0.2
SSWMS 0.75 0.15 0.25 0.39 0.10 0.15
EDLines 0.00 0.00 0.00 0.17 0.03 0.06

High

CannyLines 0.94 0.89 0.91 0.67 0.58 0.60
Linelet 0.67 0.84 0.71 0.42 0.50 0.45
FLD 0.60 0.53 0.56 0.70 0.35 0.44
LSD 0.75 0.60 0.64 0.60 0.34 0.42
ELSED 0.41 0.59 0.37 0.52 0.40 0.38
ELSDc 0.30 0.95 0.40 0.25 0.51 0.32
SSWMS 0.38 0.30 0.32 0.40 0.08 0.13
Yuan 0.15 0.16 0.15 0.09 0.12 0.10
EDLines 0.25 0.25 0.25 0.15 0.04 0.06

Mediocre

ELSDc 0.17 0.12 0.14 0.28 0.56 0.34
ELSED 0.25 0.09 0.14 0.42 0.31 0.31
LSD 0.25 0.06 0.10 0.31 0.19 0.19
CannyLines 0.12 0.25 0.17 0.28 0.15 0.18
FLD 0.25 0.09 0.14 0.27 0.15 0.17
Linelet 0.12 0.09 0.11 0.21 0.17 0.17
SSWMS 0.00 0.00 0.00 0.33 0.08 0.13
Yuan 0.10 0.06 0.08 0.07 0.07 0.06
EDLines 0.00 0.00 0.00 0.08 0.02 0.03

Low

Linelet 0.08 0.25 0.12 0.12 0.30 0.16
ELSDc 0.02 0.25 0.04 0.09 0.54 0.14
SSWMS 0.00 0.00 0.00 0.11 0.11 0.11
ELSDc 0.00 0.00 0.00 0.05 0.27 0.08
CannyLines 0.00 0.00 0.00 0.06 0.11 0.07
FLD 0.00 0.00 0.00 0.11 0.02 0.04
Yuan 0.00 0.00 0.00 0.03 0.11 0.04
Others (all 0.00)

In the publications of the algorithms LSD and EDLines, default parameters are given
by the respective authors. The results produced using these default parameters are
given in Table 5.4. For LSD, the F1 scores are much lower when using the default
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parameters. While the recall values are slightly higher for the default parameters,
meaning that more ground truth lines were correctly detected, the precision scores
are extremely low, meaning that for every correct detection, there are several false
positive detections. This can be explained by the lower angle tolerance parameter in
the optimized parameter set, which leads to less acceptance of false detections, but
also of correct detections. However, it should be noted that the LSD algorithm using
default parameters still performs better than several other line detectors for which
the parameters have been optimized. An example that represents the difference
between the optimized and standard LSD is displayed in Figure 5.4 (d) and (e).
For EDLines, the results are very poor for both the optimized and the default
parameters.

Table 5.4: Region-based line detector results for the optimization and validation
data sets using default parameters suggested by the authors.

Optimization data Validation data
Method Data quality P R F1 P R F1

LSD

Very high 0.25 0.75 0.37 0.32 0.82 0.45
High 0.17 0.62 0.27 0.2 0.51 0.28
Mediocre 0.06 0.12 0.08 0.14 0.5 0.2
Low 0.01 0.25 0.02 0.04 0.32 0.06

EDLines

Very high 0.0 0.0 0.0 0.0 0.0 0.0
High 0.08 0.25 0.12 0.04 0.08 0.05
Mediocre 0.0 0.0 0.0 0.04 0.02 0.03
Low 0.0 0.0 0.0 0.0 0.0 0.0

(a) Ground truth (b) KHT (c) PPHT (d) LSD (opt.)

(e) LSD (def.) (f) ELSED (g) CannyLines (h) FLD

Figure 5.4: A CSD with (a) ground truth lines and (b-h) the lines found by the
detectors.

For both voting-based and region-based detectors, a qualitative analysis shows that
lines with a weak gradient are significantly more problematic than the noise that is
found in many images. In images in which the lines have a weak gradient, a correct
detection is rarely made by any of the detection methods, even if the image is not
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disturbed by strong noise. This effect leads to interdot transitions being missed
particularly often because they typically have a weaker gradient than the lead-to-
dot transitions. An example is the interdot transition of the CSD in Figure 5.4,
which all methods failed to detect. While the noise poses a less critical problem
than the weak lines, it also reduces the quality of the detection results. In areas
where the noise is too strong, false positive detections occur.

To conclude, CannyLines produces the best results on the data sets of high and very
high quality out of all detectors that were evaluated. KHT, PPHT, LSD, FLD, and
the linelet-based method achieve relatively robust results, but are outperformed by
CannyLines. On the data sets of mediocre and low quality, no detector produces
usable results.

5.3 Postprocessing Results

In this section, the results for the postprocessing methods using the optimized pa-
rameters are given. Since the result of a postprocessing method depends on the
quality of the results of the preceding detection, no absolute values are shown. In-
stead, the values listed in the tables account for the changes in the averages of
precision, recall, and F1 score that are achieved by the postprocessing methods.
The changes for the data sets of mediocre and low quality are not listed because no
detector produces usable results for them, as shown in the previous section.

The results of the line segmentation method for the infinite line detectors are listed
in Table 5.5. As explained in Section 4.2, the preferred values for the maximum
gap parameter are 15, 6, and 5 depending on the quality of the edge map. The
corresponding methods are referred to as seg15, seg6, and seg5 in the table. It can
be observed that the results for different parameters mostly differ marginally. Small
improvements are due to some infinite lines not matching the infinite ground truth
lines, even though the shorter segmented line segments match the ground truth
line segments. This can happen because the absolute distance of a beginning or
end point from a ground truth line (oi ,j in equation (3.7) in Section 3.4) increases
with the length of the lines. On the other hand, false line segmentations, such as a
segmentation into a line segment that is too long to match the ground truth, lead
to decreases in precision and recall for some images. For the results of the KHT
algorithm on the high-quality optimization data set, this happens for a significant
number of lines. However, a qualitative analysis shows that these false line segments
are still relatively close to the ground truth.

The results of the validation method based on the Helmholtz principle for a selection
of line detection methods are given in Table 5.6. For the KHT algorithm, the
detected infinite lines are segmented into finite line segments before applying the
validation. In terms of precision, the results are mixed because both false and true
lines are rejected by the validation. The changes in recall values are in many cases
negative and lower than −0.1. This indicates that a significant number of true lines
are rejected. Note that a validation method cannot increase the number of correct
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Table 5.5: Changes in evaluation scores for applying the line segmentation method
using three different parameter values to the ground truth (with lines
extend to the image borders), and to the detection results of SHT and
KHT. Note that the evaluation works differently for infinite and finite
lines because they are compared to different ground truths.

Optimization data Validation data
Method Data quality P R F1 P R F1

SHT + seg15 Very high 0.0 0.0 0.0 -0.11 -0.03 -0.05
High 0.0 0.0 0.0 -0.2 -0.04 -0.07

SHT + seg6 Very high 0.0 0.0 0.0 -0.11 -0.03 -0.05
High 0.0 0.0 0.0 -0.1 -0.02 -0.03

SHT + seg5 (same as above)

KHT + seg15 Very high -0.06 -0.05 -0.06 0.0 0.0 0.0
High -0.52 -0.36 -0.44 -0.22 -0.2 -0.17

KHT + seg6 Very high -0.06 -0.05 -0.06 0.0 0.0 0.0
High -0.52 -0.36 -0.44 -0.21 -0.18 -0.16

KHT + seg5 (same as above)

detections and that a positive change in recall is therefore generally impossible
for a validation step. The best changes are achieved for ELSED. This is because
ELSED detects a relatively large number of false positives, which are rejected by the
validation, and fails to detect many true positives that could otherwise be rejected
by the validation.

Table 5.6: Changes in evaluation scores for applying the validation method to the
ground truth and to a selection of line detectors.

Optimization data Validation data
Method Data quality P R F1 P R F1

Ground truth + val. Very high 0.0 -0.12 -0.08 0.0 -0.11 -0.06
High 0.0 -0.11 -0.06 0.0 -0.19 -0.12

KHT (segm.) + val. Very high -0.25 -0.12 -0.17 0.0 0.0 0.0
High 0.06 -0.05 0.0 0.01 0.0 0.01

PPHT + val. Very high -0.25 -0.12 -0.17 0.15 -0.04 0.03
High -0.02 -0.05 -0.03 0.01 0.0 0.02

LSD + val. Very high 0.0 -0.18 -0.14 -0.02 -0.11 -0.09
High 0.0 -0.11 -0.1 0.1 0.0 0.02

ELSED + val. Very high 0.09 -0.12 -0.02 0.04 0.0 0.02
High 0.02 -0.11 -0.07 0.04 0.0 0.01

CannyLines + val. Very high -0.21 -0.12 -0.15 0.04 -0.11 -0.05
High 0.06 -0.05 -0.01 0.04 -0.06 -0.04

The lack of significant improvements after the application of the validation step can
be explained by the distribution of the NFA values for the ground truth lines and
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the false positive detections. Figure 5.5 displays histograms of the NFA values for
(a) ground truth lines in the optimization data, (b) false randomly created lines,
and (c) false detections of PPHT. Approximately 16% of the ground truth lines and
58% of the randomly created lines have an NFA value of 1 or higher. Therefore, the
validation method rejects random lines much more often than true lines. However, all
false detections of the PPHT method1 have a very small NFA value. Consequently,
no false positives are rejected by the validation method. This analysis shows that
line validation using the Helmholtz principle is useful for the removal of random
lines, but not for the removal of false detections. Therefore, line validation using
the Helmholtz principle does not lead to improvements for the data set used in this
thesis.

(a) Ground truth lines (b) Randomly created lines

(c) False PPHT detections

Figure 5.5: Histograms of the NFA values for (a) the ground truth lines, (b) the
randomly created lines from the optimization data, and (c) the false
detections of PPHT. Note the logarithmic scale of the x-axis.

The changes in evaluation scores when applying FSG to a selection of line detectors
are listed in Table 5.7. Additionally, the impact of FSG to the ground truth is
given. The results contain small, but significant changes. A qualitative analysis
shows that the changes are mostly due to the merging step. Some long lines are
detected as separate, short lines. The merging step connects these into longer lines,
leading to improvements in the evaluation. Figure 5.6 (b) shows an example of
this. Decreases in the evaluation scores also appear in several cases. Some lines
are separate but roughly parallel and closely located. These lines are erroneously
merged by FSG. This effect occurs even if FSG is applied to the ground truth. An
example of this effect is shown in Figure 5.6 (d). For the KHT algorithm, FSG does

1The histograms for the other line detectors are similar. PPHT is chosen as an example because
it is the worst case, in which all false detections have a very small NFA value.
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not lead to any changes in the evaluation scores. This is because KHT often detects
long and contiguous lines, as opposed to short and separate ones. In conclusion,
FSG produces too many false positives by erroneous merging of lines to be useful
for the CSD data set.

Table 5.7: Changes in evaluation scores for applying FSG to the ground truth and
to a selection of line detectors.

Optimization data Validation data
Method Data quality P R F1 P R F1

Ground truth + FSG Very high 0.0 0.0 0.0 -0.04 -0.07 -0.06
High 0.0 0.0 0.0 -0.08 -0.12 -0.11

LSD + FSG Very high 0.12 0.0 0.03 0.05 0.0 0.03
High 0.0 0.0 0.0 -0.02 -0.02 -0.02

ELSED + FSG Very high 0.0 0.0 0.0 0.0 0.0 0.0
High 0.0 0.0 0.0 -0.01 -0.04 -0.02

CannyLines + FSG Very high 0.0 0.0 0.0 0.02 0.0 0.01
High 0.0 0.0 0.0 -0.06 -0.04 -0.04

PPHT + FSG Very high 0.12 0.0 0.03 0.16 0.0 0.05
High 0.09 0.0 0.08 -0.1 -0.12 -0.08

KHT + FSG (all 0.00)

5.4 Implications for the Analysis of CSDs

The results show that the quality of the line detection is strongly dependent on the
data quality. For most images, the detection quality is insufficient for an analysis
of the CSD. However, there is a significant number of images for which the detec-
tion quality is good enough. The validation data sets of high and very high quality
contain 16 images. For three of these images, CannyLines (without postprocessing)
detects all lines without any false positives. Additionally, there are five images in
which all lead-to-dot transitions are detected, but the interdot transition is missed.
An example of such a detection is displayed in Figure 5.4 (g). The missing interdot
transition could potentially be reconstructed using the detected lead-to-dot tran-
sitions and the images contain no or very few false positives. Therefore, for eight
out of the 16 validation images with high or very high quality (50%), the detections
obtained from CannyLines are sufficient for a full analysis of the structure.

For the other eight validation images of high or very high quality, CannyLines al-
ways finds one or several lead-to-dot-transitions, but never misses all of them. The
interdot transitions are missed in most cases. Nevertheless, these detection results
can still be useful for subsequent CSD analysis methods. Higher quality data is
necessary to reliably detect all charge transitions. Improving the signal-gradient-
to-noise ratio is a promising option to increase the number of correctly detected
charge transitions. For this purpose, a method to automatically tune sensor dots to

54



5.4 Implications for the Analysis of CSDs

(a) (b)

(c) (d)

Figure 5.6: Examples of results produced by FSG: a CSD with (a) a single line
detected as several short lines, (b) the reconstruction of the longer line
using FSG, (c) two correctly detected lines that are parallel and closely
located, and (d) an erroneous merging of the two separate lines.

be optimally sensitive to changes in its electrostatic environment was proposed by
Hader et al. [46].

Since the hardware and processes used to measure CSDs are subject of ongoing de-
velopment, the quality of the CSDs is expected to improve in the future. Therefore,
the poor line detection results on the CSDs of mediocre and low quality pose a less
critical problem for the project.
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The analysis of a specific type of diagram, called CSD, plays an important role
during the calibration of qubits in double quantum dots. CSDs are grayscale images
that contain line segments. For the automatic analysis of CSDs, automatic detection
of these line segments is required. However, the CSDs are disturbed by noise and
many of the line segments have very weak edges. This makes a robust automatic
detection of the line segments challenging.

A variety of different line detection methods were explored in this thesis repre-
senting both voting-based and region-based approaches. Since some line detection
methods require a binary edge map as input, edge detection methods were analyzed
as well. Additionally, some sub-methods of the detectors, which are exchangeable,
were analyzed as separate methods for edge detection or postprocessing. To enable
a structured evaluation and comparison, uniform software interfaces using the same
programming language were defined for the methods.

Two methods for the automatic evaluation of the detection results were proposed.
One of them evaluates binary pixel maps, like the ones produced by edge detec-
tors, while the other method evaluates the list of detected line segments. Using
these evaluation methods, free parameters of the edge detection, line detection, and
postprocessing methods were optimized. Using automatically optimized parameters
leads to better results and enables a more objective comparison of the detection
qualities of the various methods.

The proposed evaluation methods compare the detection results to manually created
ground truth data. This ground truth data consists of CSDs with contained line
segments, defined by their beginning and end points. For the evaluation of edge
detection methods, the detected edge pixels were compared to the pixels that belong
to the line segments in the ground truth data. Thereby, a good representation of
many lines is preferred over a perfect representation of few lines, even if both results
contain the same amount of correctly detected edge pixels. Both the true positive
and false negative edge detections on every ground truth line segment are taken
into account. An additional error term punishes the number of false positive edge
detections. For the evaluation of line detection methods, the detected line segments
were compared to the ground truth line segments. A set of conditions is defined to
decide whether a detected line segment matches a ground truth line segment. As
some methods only detect infinite lines, they are treated in this context as finite
line segments whose beginning and end points are located on the image borders.
Based on the determined matches, the numbers of true positive, false positive, and
false negative line segments are established. Using these numbers, the quality of
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the detection result can be quantified via the F1 score. This evaluation method is
intentionally designed to ignore some properties of the detection results like slight
displacements of the lines or slight errors in the detected line segments’ lengths.
This is because such errors are of minor importance to the analysis of CSDs than
completely failing to detect some of the lines.

Free parameters of the detection methods were optimized using the differential evo-
lution algorithm to maximize the average score of the evaluation methods mentioned
above. This parameter optimization was done on a data set that is separate from
the one used in the final evaluation and comparison of the methods.

The CannyPF algorithm produces the best results for the selected edge detectors
and CannyLines for the selected line detection methods. For both edge and line
detection, the quality of the results is strongly dependent on the quality of the CSD
images. Lines with a very weak gradient almost always fail to be detected. Noise
and artifacts in the CSD images also pose a problem but are less critical than the
weak gradient of some lines.

The postprocessing methods were evaluated based on the changes they cause on
the evaluation scores. One postprocessing method is the segmentation of infinite
lines into finite line segments. This method mostly works with acceptable quality.
However, there are cases in which an infinite line with the correct position and
angle is segmented into a line segment that is too short or too long. The validation
method using the Helmholtz principle has been shown to not be useful for the data
used in this thesis as it mostly cannot distinguish between true positives and false
positives. The FSG method for merging and grouping line segments that belong
together produces mixed results. There are both small negative and small positive
changes in detection quality after applying FSG to the data sets. However, the
negative effects outweigh the positive ones.

Within the validation data sets of high and very high quality, the line detection
quality of CannyLines is sufficient to perform a full analysis of the structures for
half of the images. The other images of high and very high quality are partly
analyzable. For the data sets of mediocre and low quality, no line detector produces
usable results.
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The detectors evaluated in this thesis do not include approaches based on machine
learning. However, such approaches have led to excellent edge and line detection
results in recent years [5], [47]. Since machine learning methods use many more free
parameters, the size of the optimization data set must be increased to train them.
For this purpose, synthetic data [48] can be included in the optimization data set,
since they are much easier to obtain and label than real measurement data.

Almost all methods evaluated in this thesis make use of a gradient magnitude map.
In this thesis, the Sobel operator is used for this purpose. The quality of the results
could potentially be improved by using other local features to enhance the quality of
the map. Additionally, more research into edge-preserving smoothing could improve
the results.

For many cases, the gradient magnitude map can also be replaced by a probability
of boundary map, such as the one produced by gPb. Although thresholding of
the gPb underperforms thresholding of the gradient magnitude in this thesis, the
quality of the gPb could be further improved as not all free parameters of the gPb
were optimized for the CSD data set. Additionally, the features used by the gPb
are designed for natural RGB images and can be not or only poorly applicable to
CSDs. The selection of CSD specific features could be used to adapt the gPb.

For those methods which use a separate edge detection step, the free parameters of
the edge detection step and the line detection step are optimized separately in this
thesis. This is suboptimal because the parameter set that maximizes the evaluation
score for an edge detector might not lead to the best results in combination with
a subsequent line detection step. For example, for a line detector that is good at
ignoring false positive edge pixels, an edge map that contains more true positive but
also more false positive edge pixels is preferable.

During the parameter selection, a tradeoff between precision and recall has to be
made because parameter sets that lead to the detection of more true positives usually
also lead to the detection of more false positives. If a reliable validation method for
the rejection of false positives was found, more true positives could be detected
because a different parameter set could be chosen.

To increase the number of found lines further, missed lines need to be reconstructed
from detected lines. For this purpose, a reconstruction method that takes domain
related information about the CSDs and charge transitions into account has to be
developed. It is to be expected that the reconstruction of an interdot transition
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based on the surrounding lead-to-dot transitions works especially well. This fits the
results of this thesis, in which the interdot transitions are missed more often than
the lead-to-dot transitions.

Finally, the automatic selection of the optimal voltage ranges for the gates must be
integrated into the tuning workflow. Therefore, the specific charge distributions for
the honeycomb structures have to be determined. Methods that accomplish this
task, incorporating the information extracted via line detection, must be developed.
For this purpose, a method for the semantic classification of the lines is required.
Additionally, the minimal required gradient magnitude per line detection method
can be estimated.
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